📄 kcenter_dd.m
字号:
%KCENTER_DD k-center data description.% % W = kcenter_dd(A,fracrej,K)% % Train a k-center method with K prototypes on dataset A.% % See also datasets, mappings, dd_roc% Copyright: D. Tax, R.P.W. Duin, duin@ph.tn.tudelft.nl% Faculty of Applied Physics, Delft University of Technology% P.O. Box 5046, 2600 GA Delft, The Netherlands function [W,out] = kcenter_dd(a,fracrej,K,nrtries)if nargin < 4, nrtries = 25; endif nargin < 3 | isempty(K), K = 5; endif nargin < 2 | isempty(fracrej), fracrej = 0.05; endif nargin < 1 | isempty(a) % empty nndd W = mapping(mfilename,{fracrej,N}); returnendif isa(fracrej,'double') %training if ~isa(a,'dataset') %train on training set error('I need a dataset to train'); end a = oc_set(a); % make sure a is an OC dataset [nlab,lablist,m,k,c] = dataset(a); % train it: D = dist(a,a'); [lab,J,dmin] = kcentres(D,K,nrtries); x = a(J,:); % obtain the threshold: d = min(dist(x,a'))'; thr = -threshold(-d,fracrej); %and save all useful data: W.x = +x; W.threshold = thr; W.scale = mean(d); W = mapping(mfilename,W,str2mat('target','outlier'),k,c);else %testing [nlab,lablist,m,k,c,p] = dataset(a); [W,classlist,type,k,c] = mapping(fracrej); % unpack %compute: out = [min(dist(W.x,a'))' ones(m,1)*W.threshold]; newout = dist2dens(out,W.scale); W = dataset(newout,getlab(a),classlist,p,lablist);endreturn
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -