📄 kmeans_dd.m
字号:
%KMEANS_DD k-means data description.% % W = kmeans_dd(A,fracrej,K)% % Train a k-means method with K prototypes on dataset A. Parameter% fracrej gives the fraction of the target set which will be rejected.% % This method requires the k-means from the NetLab toolbox. Here the% means are optimized using a EM algorithm. To avoid confusion with% the PRTools kmeans, the NetLab kmeans is copied to mykmeans and this% version is used.% % See also datasets, mappings, dd_roc% Copyright: D. Tax, R.P.W. Duin, duin@ph.tn.tudelft.nl% Faculty of Applied Physics, Delft University of Technology% P.O. Box 5046, 2600 GA Delft, The Netherlands function [W,out] = kmeans_dd(a,fracrej,K,epochs)if nargin < 4, epochs = 1000; endif nargin < 3 | isempty(K), K = 5; endif nargin < 2 | isempty(fracrej), fracrej = 0.05; endif nargin < 1 | isempty(a) % empty dd W = mapping('kmeans_dd',{fracrej,N}); returnendif isa(fracrej,'double') %training if ~isa(a,'dataset') %train on training set error('KMEANS_DD: I need a dataset to train'); end a = oc_set(a); % make sure a is an OC dataset [nlab,lablist,m,k,c] = dataset(a); % train it: options = 0; options(14) = epochs; w0 = rand(K,k); w = mykmeans(w0, +a, options); w = setdiff(w,w0,'rows'); w = unique(w,'rows');% if max(size(w))<2% error('Did not find a solution');% end % obtain the threshold: d = min(dist(+a,w'),[],2); if (size(d,2)~=1) d = d'; end thr = -threshold(-d,fracrej); %and save all useful data: W.w = w; W.threshold = thr; W.scale = mean(d); W = mapping('kmeans_dd',W,str2mat('target','outlier'),k,c);else %testing [W,classlist,type,k,c] = mapping(fracrej); % unpack [nlab,lablist,m,k,c,p] = dataset(a); %compute: out = min(dist(W.w,a'))'; if max(size(out))==1 out end newout = dist2dens([out ones(m,1)*W.threshold],W.scale); W = dataset(newout,getlab(a),classlist,p,lablist);endreturn
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -