📄 mem_transfer_ia64.s
字号:
///////////////////////////////////////////////////////////////////////////////
//
// mem_transfer.c optimized for ia-64 by Sebastian Felis and Max Stengel,
// University of Karlsruhe, Germany, 03.06.2002, during the laboratory
// "IA-64 Video Codec Assember Parktikum" at IPD Goos.
//
//
///// legal header taken from original C-file ///////////////////////////////////////
//
// XVID MPEG-4 VIDEO CODEC
// - 8bit<->16bit transfer -
//
// This program is an implementation of a part of one or more MPEG-4
// Video tools as specified in ISO/IEC 14496-2 standard. Those intending
// to use this software module in hardware or software products are
// advised that its use may infringe existing patents or copyrights, and
// any such use would be at such party's own risk. The original
// developer of this software module and his/her company, and subsequent
// editors and their companies, will have no liability for use of this
// software or modifications or derivatives thereof.
//
// This program is free software ; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation ; either version 2 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY ; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program ; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
///// History /////////////////////////////////////////////////////////////////
//
// - 16.07.2002: several minor changes for ecc-conformity
// - 03.06.2002: initial version
//
///////////////////////////////////////////////////////////////////////////////
//
// Annotations:
// ===========
//
// - All functions work on 8x8-matrices. While the C-code-functions treat each
// element seperatly, the functions in this assembler-code treat a whole line
// simultaneously. So one loop is saved.
// The remaining loop is relized by using softwarepipelining with rotating
// rregisters.
// - Register renaming is used for better readability
// - To load 8 bytes of missaligned data, two 8-byte-blocks are loaded, both
// parts are shifted and joined together with an "OR"-Instruction.
// - First parameter is stored in GR 32, next in GR 33, and so on. They must be
// saved, as these GRs are used for register-rotation.
// - Some of the orininal, German comments used during development are left in
// in the code. They shouldn't bother anyone.
//
// Anmerkungen:
// ============
//
// - Alle Funtionen arbeiten mit 8x8-Matrizen. W鋒rend die Funktionen im C-Code
// jedes Element einzeln bearbeiten, bearbeiten die Funtionen dieses Assembler-
// Codes eine Zeile gleichzeitig. Dadurch kann eine Schleife eingespart werden.
// Die verbleibende Schleife wird unter Benutzung von Softwarepipelining mit
// rotierenden Registern realisiert.
// - Umbenennung der Register zwecks besserer Lesbarkeit wird verwendet.
// - Um 8 Bytes falsch ausgerichtete Daten zu laden, werden zwei 8-Byte-Bl鯿ke
// geladen, beide Teile mit "shift"-Operationen zurechter點kt und mit einem
// logischen Oder zusammenkopiert.
// - Die Parameter werden in den Registern ab GR 32 黚ergeben. Sie m黶sen ge-
// sichert werden, da die Register f黵 die register-Rotation ben鰐igt werden.
// - Einige der urspr黱glichen, deutschen Kommentare aus der Entwicklungsphase
// sind im Code verblieben. Sie sollten niemanden st鰎en.
//
///////////////////////////////////////////////////////////////////////////////
// *** define Latencies for software pipilines ***
LL = 3 // Load
SL = 3 // Store
PL = 1 // Pack
SHL = 1 // Shift
OL = 1 // Or
UL = 1 // Unpack
PAL = 1 // Parallel Add
PSL = 1 // Parallel Subtract
PAVGL = 1 // Parallel Avarage
.text
///////////////////////////////////////////////////////////////////////////////
//
// transfer8x8_copy_ia64
//
// SRC is missaligned, to align the source load two 8-bytes-words, shift it,
// join them and store the aligned source into the destination address.
//
///////////////////////////////////////////////////////////////////////////////
.align 16
.global transfer8x8_copy_ia64#
.proc transfer8x8_copy_ia64#
transfer8x8_copy_ia64:
.prologue
// *** register renaming ***
zero = r0
oldLC = r2
oldPR = r3
src_1 = r14 // left aligned address of src
src_2 = r15 // right aligned address of src
dst = r16 // destination address
stride = r17
offset = r18 // shift right offset
aoffset = r19 // shift left offset
// *** Saving old Loop-Counter (LC) and Predicate Registers (PR) ***
.save ar.lc, oldLC
mov oldLC = ar.lc
mov oldPR = pr
.body
// *** Allocating new stackframe, initialize LC, Epilogue-Counter and PR ***
alloc r9 = ar.pfs, 3, 29, 0, 32
// *** Saving Parameters ***
mov dst = r32
mov stride = r34
// *** Misalingment-Treatment ***
and src_1 = -8, r33 // Computing adress of first aligned block containing src-values
dep offset = r33, zero, 3, 3 // Extracting offset for shr from src-adress
;;
sub aoffset = 64, offset // Computing counterpart of offset ("anti-offset"), used for shl
add src_2 = 8, src_1 // Computing adress of second aligned block containing src-values
// *** init loop: set loop counter, epilog counter, predicates ***
mov ar.lc = 7
mov ar.ec = LL + SHL + OL + 1
mov pr.rot = 1 << 16
;;
// *** define register arrays and predicate array for software pipeline ***
// src_v1 = source value 1, shd_r = shifted right, shd_l = shifted left
.rotr src_v1[LL+1], src_v2[LL+1], shd_r[SHL+1], shd_l[SHL+1], value[OL+1]
.rotp ld_stage[LL], sh_stage[SHL], or_stage[OL], st_stage[1]
// Software pipelined loop:
// Stage 1: Load two 2 bytes from SRC_1, SRC_2 into SRC_v1 and SRC_v2
// Stage 2: Shift both values of source to SHD_R and SHD_L
// Stage 3: Join both parts together with OR
// Stage 4: Store aligned date to destination and add stride to destination address
.Loop_8x8copy:
{.mii
(ld_stage[0]) ld8 src_v1[0] = [src_1], stride
(sh_stage[0]) shr.u shd_r[0] = src_v1[LL], offset
}
{.mii
(ld_stage[0]) ld8 src_v2[0] = [src_2], stride
(sh_stage[0]) shl shd_l[0] = src_v2[LL], aoffset
(or_stage[0]) or value[0] = shd_l[SHL], shd_r[SHL]
}
{.mib
(st_stage[0]) st8 [dst] = value[OL]
(st_stage[0]) add dst = dst, stride
br.ctop.sptk.few .Loop_8x8copy
;;
}
// *** Restore old LC and PRs ***
mov ar.lc = oldLC
mov pr = oldPR, -1
br.ret.sptk.many b0
.endp transfer8x8_copy_ia64#
///////////////////////////////////////////////////////////////////////////////
//
// transfer_8to16copy_ia64
//
// SRC is aligned. To convert 8 bit unsigned values to 16 bit signed values,
// UNPACK is used. So 8 bytes are loaded from source, unpacked to two
// 4 x 16 bit values and stored to the destination. Destination is a continuous
// array of 64 x 16 bit signed data. To store the next line, only 16 must be
// added to the destination address.
///////////////////////////////////////////////////////////////////////////////
.align 16
.global transfer_8to16copy_ia64#
.proc transfer_8to16copy_ia64#
transfer_8to16copy_ia64:
.prologue
// *** register renaming ***
oldLC = r2
oldPR = r3
zero = r0 // damit ist die Zahl "zero" = 0 gemeint
dst_1 = r14 // destination address for first 4 x 16 bit values
dst_2 = r15 // destination address for second 4 x 16 bit values
src = r16
stride = r17
// *** Saving old Loop-Counter (LC) and Predicate Registers (PR) ***
.save ar.lc, oldLC
mov oldLC = ar.lc
mov oldPR = pr
.body
// *** Allocating new stackframe, define rotating registers ***
alloc r9 = ar.pfs, 4, 92, 0, 96
// *** Saving Paramters ***
mov dst_1 = r32 // fist 4 x 16 bit values
add dst_2 = 8, r32 // second 4 x 16 bit values
mov src = r33
mov stride = r34
// *** init loop: set loop counter, epilog counter, predicates ***
mov ar.lc = 7
mov ar.ec = LL + UL + 1
mov pr.rot = 1 << 16
;;
// *** define register arrays and predicate array for software pipeline ***
// src_v = source value, dst_v1 = destination value 1
.rotr src_v[LL+1], dst_v1[UL+1], dst_v2[UL+1]
.rotp ld_stage[LL], upack_stage[UL], st_stage[1]
// Software pipelined loop:
// Stage 1: Load value of SRC
// Stage 2: Unpack the SRC_V to two 4 x 16 bit signed data
// Stage 3: Store both 8 byte of 16 bit data
.Loop_8to16copy:
{.mii
(ld_stage[0]) ld8 src_v[0] = [src], stride
(upack_stage[0]) unpack1.l dst_v1[0] = zero, src_v[LL]
(upack_stage[0]) unpack1.h dst_v2[0] = zero, src_v[LL]
}
{.mmb
(st_stage[0]) st8 [dst_1] = dst_v1[UL], 16
(st_stage[0]) st8 [dst_2] = dst_v2[UL], 16
br.ctop.sptk.few .Loop_8to16copy
;;
}
// *** Restore old LC and PRs ***
mov ar.lc = oldLC
mov pr = oldPR, -1
br.ret.sptk.many b0
.endp transfer_8to16copy_ia64#
///////////////////////////////////////////////////////////////////////////////
//
// transfer_16to8copy_ia64
//
// src is a 64 x 16 bit signed continuous array. To convert the 16 bit
// values to 8 bit unsigned data, PACK is used. So two 8-bytes-words of
// 4 x 16 bit signed data are loaded, packed together and stored a 8-byte-word
// of 8 x 8 unsigned data to the destination.
///////////////////////////////////////////////////////////////////////////////
.align 16
.global transfer_16to8copy_ia64#
.proc transfer_16to8copy_ia64#
transfer_16to8copy_ia64:
.prologue
// *** register renaming ***
dst = r14
src_1 = r15
src_2 = r17
stride = r16
// *** Saving old Loop-Counter (LC) and Predicate Registers (PR) ***
.save ar.lc, oldLC
mov oldLC = ar.lc
mov oldPR = pr
.body
// *** Allocating new stackframe, define rotating registers ***
alloc r9 = ar.pfs, 4, 92, 0, 96
// *** Saving Paramters ***
mov dst = r32
mov src_1 = r33
add src_2 = 8, r33
mov stride = r34
// *** init loop: set loop counter, epilog counter, predicates ***
mov ar.lc = 7
mov ar.ec = LL + PL + 1
mov pr.rot = 1 << 16
;;
// *** define register arrays and predicate array for software pipeline ***
// src_v1 = source value 1, dst_v = destination value
.rotr src_v1[LL+1], src_v2[LL+1], dst_v[PL+1]
.rotp ld_stage[LL], pack_stage[PL], st_stage[1]
// Software pipelined loop:
// Stage 1: Load two 8-byte-words of 4 x 16 bit signed source data
// Stage 2: Pack them together to one 8 byte 8 x 8 bit unsigned data
// Stage 3: Store the 8 byte to the destination address and add stride to
// destination address (to get the next 8 byte line of destination)
.Loop_16to8copy:
{.mmi
(ld_stage[0]) ld8 src_v1[0] = [src_1], 16
(ld_stage[0]) ld8 src_v2[0] = [src_2], 16
(pack_stage[0]) pack2.uss dst_v[0] = src_v1[LL], src_v2[LL]
}
{.mib
(st_stage[0]) st8 [dst] = dst_v[PL]
(st_stage[0]) add dst = dst, stride
br.ctop.sptk.few .Loop_16to8copy
;;
}
// *** Restore old LC and PRs ***
mov ar.lc = oldLC
mov pr = oldPR, -1
br.ret.sptk.many b0
.endp transfer_16to8copy_ia64#
///////////////////////////////////////////////////////////////////////////////
//
// transfer_16to8add_ia64
//
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -