⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 rbfnet.asv

📁 RBF神经网络的程序, RBF神经网络的程序
💻 ASV
字号:
function a = rbfnet(hyper) %=============================================================================% Radial Basis Function Network object             %=============================================================================  % a=rbfnet(hyperParam) %% Generates an rbfnet object with given hyperparameters. The used basis% functions are exp(-gamma*||x-z_i||)  where gamma and z_i can be optimized%%%   Hyperparameters (with defaults)%   nr_of_centers=1      -- the number of centers to be used%   init_with_kmeans=0   -- the centers are initialized with a kmeans %   fixgamma=0           -- the variance is fixed. model parameter gamma%                           is used%   maxiter=2000         -- number of maximal iterations%   eps = 0              -- stopping criteria% %   Model%    centers               -- the centers used for basis functions%    gamma                 -- estimated 1/2*variance^2 parameter%    alpha                 -- final coefficients%% Methods:%  train, test%% Example:% % Estimate Sinc Function  with Rbfnet and Bagged Rbfnet%t=[-5:0.29:5]';%ttest=[-5:0.06:5]';%y=sin(t)./t+1e-2*randn(length(t),1);%ytest=sin(ttest)./ttest+1e-1*randn(length(ttest),1);%%d=data(t,y)%dtest=data(ttest,ytest)%%rbn=rbfnet('nr_of_centers=3');%rbn.fixgamma=0; rbn.gamma=1e-3; rbn.eps=1e-5; rbn.init_with_kmeans =0;%rbn.maxiter=500; rbn.algorithm.use_signed_output=0;%a0=bagging(rbn,'bags=3');%a0.algorithm.use_signed_output=0;%[r,a]=train(group({rbn,a0}),d)%a1=a.child{1}; % this was the rbf net %r=test(a1,dtest);%hold on;%plot(ttest,ytest,'.')%plot(ttest,r.X,'ro-'); %loss(r,'quadratic_loss')%a2=a.child{2}; % this was the bagged rbf net%r=test(a2,dtest); %plot(ttest,r.X,'b+-');  loss(r,'quadratic_loss')%legend({'true','Rbf','Bagged RBF'})%plot(a1.centers,a.centers*0,'rx')%=============================================================================% Reference : Neural Networks% Author    : Chris Bishop% Link      : -%=============================================================================     a.nr_of_centers=1;  a.init_with_kmeans=0;  a.fixgamma=0;  a.maxiter=2000;  a.eps=1e-5;  % model  a.centers=[];  a.gamma=[];  a.alpha=[];    p=algorithm('rbfnet');  a= class(a,'rbfnet',p);  a.algorithm.alias={'k','nr_of_centers'}; % kernel aliases   if nargin==1,    eval_hyper;  end;  

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -