⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 learn_params.m

📁 麻省理工学院的人工智能工具箱,很珍贵,希望对大家有用!
💻 M
字号:
function [bnet, LL, BIC_score] = learn_params(bnet, data)% LEARN_PARAMS Find the maximum likelihood params for a fully observed model% [bnet, LL, BIC_score] = learn_params(bnet, data, ...)%% data(i,m) is the value of node i in case m (can be a cell array)% We set bnet.CPD{i} to its MLE.% LL = log likelihood % BIC_score is an approx. to the log marginal likelihood.%% The following optional arguments can be specified in the form of name/value pairs:% [default value in brackets]%% clamped    - clamped(i,m) = 1 if node i is clamped in case m [ zeros(N, ncases) ]%% Currently we assume no param tying[n ncases] = size(data);BIC = zeros(1,n);L = zeros(1,n);for j=1:n  e = bnet.equiv_class(j);  assert(e==j);  if adjustable_CPD(bnet.CPD{e})    ps = parents(bnet.dag, j);    bnet.CPD{j} = learn_params(bnet.CPD{j}, [ps j], data, bnet.node_sizes, bnet.cnodes);    L(j) = log_prob_node(bnet.CPD{j}, data(j,:), data(ps,:));    S = struct(bnet.CPD{j}); % violate object privacy    % fprintf('node %d, L %6.4f, params %d\n', j, L(j), S.nparams);    BIC(j) = L(j) - 0.5*S.nparams*log(ncases);  endendLL = sum(L);BIC_score = sum(BIC);

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -