📄 learn_struct_pdag_pc.m
字号:
function [pdag, G] = learn_struct_pdag_pc(cond_indep, n, k, varargin)% LEARN_STRUCT_PDAG_PC Learn a partially oriented DAG (pattern) using the PC algorithm% P = learn_struct_pdag_pc(cond_indep, n, k, ...)%% n is the number of nodes.% k is an optional upper bound on the fan-in (default: n)% cond_indep is a boolean function that will be called as follows:% feval(cond_indep, x, y, S, ...)% where x and y are nodes, and S is a set of nodes (positive integers),% and ... are any optional parameters passed to this function.%% The output P is an adjacency matrix, in which% P(i,j) = -1 if there is an i->j edge.% P(i,j) = P(j,i) = 1 if there is an undirected edge i <-> j%% The PC algorithm does structure learning assuming all variables are observed.% See Spirtes, Glymour and Scheines, "Causation, Prediction and Search", 1993, p117.% This algorithm may take O(n^k) time if there are n variables and k is the max fan-in,% but this is quicker than the Verma-Pearl IC algorithm, which is always O(n^n). sep = cell(n,n);ord = 0;done = 0;G = ones(n,n);G=setdiag(G,0);while ~done done = 1; [X,Y] = find(G); for i=1:length(X) x = X(i); y = Y(i); nbrs = mysetdiff(myunion(neighbors(G, x), neighbors(G,y)), [x y]); if length(nbrs) >= ord & G(x,y) ~= 0 done = 0; SS = subsets(nbrs, ord, ord); % all subsets of size ord for si=1:length(SS) S = SS{si}; if feval(cond_indep, x, y, S, varargin{:}) %if isempty(S) % fprintf('%d indep of %d ', x, y); %else % fprintf('%d indep of %d given ', x, y); fprintf('%d ', S); %end %fprintf('\n'); % diagnostic %[CI, r] = cond_indep_fisher_z(x, y, S, varargin{:}); %fprintf(': r = %6.4f\n', r); G(x,y) = 0; G(y,x) = 0; sep{x,y} = myunion(sep{x,y}, S); sep{y,x} = myunion(sep{y,x}, S); break; % no need to check any more subsets end end end end ord = ord + 1;end% Create the minimal pattern,% i.e., the only directed edges are V structures.pdag = G;[X, Y] = find(G);% We want to generate all unique triples x,y,z% This code generates x,y,z and z,y,x.for i=1:length(X) x = X(i); y = Y(i); Z = find(G(y,:)); Z = mysetdiff(Z, x); for z=Z(:)' if G(x,z)==0 & ~ismember(y, sep{x,z}) & ~ismember(y, sep{z,x}) %fprintf('%d -> %d <- %d\n', x, y, z); pdag(x,y) = -1; pdag(y,x) = 0; pdag(z,y) = -1; pdag(y,z) = 0; end endend% Convert the minimal pattern to a complete one,% i.e., every directed edge in P is compelled% (must be directed in all Markov equivalent models),% and every undirected edge in P is reversible.% We use the rules of Pearl (2000) p51 (derived in Meek (1995))old_pdag = zeros(n);iter = 0;while ~isequal(pdag, old_pdag) iter = iter + 1; old_pdag = pdag; % rule 1 [A,B] = find(pdag==-1); % a -> b for i=1:length(A) a = A(i); b = B(i); C = find(pdag(b,:)==1 & G(a,:)==0); % all nodes adj to b but not a if ~isempty(C) pdag(b,C) = -1; pdag(C,b) = 0; %fprintf('rule 1: a=%d->b=%d and b=%d-c=%d implies %d->%d\n', a, b, b, C, b, C); end end % rule 2 [A,B] = find(pdag==1); % unoriented a-b edge for i=1:length(A) a = A(i); b = B(i); if any( (pdag(a,:)==-1) & (pdag(:,b)==-1)' ); pdag(a,b) = -1; pdag(b,a) = 0; %fprintf('rule 2: %d -> %d\n', a, b); end end % rule 3 [A,B] = find(pdag==1); % a-b for i=1:length(A) a = A(i); b = B(i); C = find( (G(a,:)==1) & (pdag(:,b)==-1)' ); % C contains nodes c s.t. a-c->ba G2 = setdiag(G(C, C), 1); if any(G2(:)==0) % there are 2 different non adjacent elements of C pdag(a,b) = -1; pdag(b,a) = 0; %fprintf('rule 3: %d -> %d\n', a, b); end endend
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -