⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 glmhess.m

📁 麻省理工学院的人工智能工具箱,很珍贵,希望对大家有用!
💻 M
字号:
function [h, hdata] = glmhess(net, x, t, hdata)%GLMHESS Evaluate the Hessian matrix for a generalised linear model.%%	Description%	H = GLMHESS(NET, X, T) takes a GLM network data structure NET,   a%	matrix X of input values, and a matrix T of target values and returns%	the full Hessian matrix H corresponding to the second derivatives of%	the negative log posterior distribution, evaluated for the current%	weight and bias values as defined by NET. Note that the target data%	is not required in the calculation, but is included to make the%	interface uniform with NETHESS.  For linear and logistic outputs, the%	computation is very simple and is  done (in effect) in one line in%	GLMTRAIN.%%	[H, HDATA] = GLMHESS(NET, X, T) returns both the Hessian matrix H and%	the contribution HDATA arising from the data dependent term in the%	Hessian.%%	H = GLMHESS(NET, X, T, HDATA) takes a network data structure NET, a%	matrix X of input values, and a matrix T of  target values, together%	with the contribution HDATA arising from the data dependent term in%	the Hessian, and returns the full Hessian matrix H corresponding to%	the second derivatives of the negative log posterior distribution.%	This version saves computation time if HDATA has already been%	evaluated for the current weight and bias values.%%	See also%	GLM, GLMTRAIN, HESSCHEK, NETHESS%%	Copyright (c) Ian T Nabney (1996-2001)% Check arguments for consistencyerrstring = consist(net, 'glm', x, t);if ~isempty(errstring);  error(errstring);endndata = size(x, 1);nparams = net.nwts;nout = net.nout;p = glmfwd(net, x);inputs = [x ones(ndata, 1)];if nargin == 3   hdata = zeros(nparams);	% Full Hessian matrix   % Calculate data component of Hessian   switch net.outfn   case 'linear'      % No weighting function here      out_hess = [x ones(ndata, 1)]'*[x ones(ndata, 1)];      for j = 1:nout         hdata = rearrange_hess(net, j, out_hess, hdata);      end   case 'logistic'      % Each output is independent      e = ones(1, net.nin+1);      link_deriv = p.*(1-p);      out_hess = zeros(net.nin+1);      for j = 1:nout         inputs = [x ones(ndata, 1)].*(sqrt(link_deriv(:,j))*e);         out_hess = inputs'*inputs;   % Hessian for this output         hdata = rearrange_hess(net, j, out_hess, hdata);      end         case 'softmax'      bb_start = nparams - nout + 1;	% Start of bias weights block      ex_hess = zeros(nparams);	% Contribution to Hessian from single example      for m = 1:ndata         X = x(m,:)'*x(m,:);         a = diag(p(m,:))-((p(m,:)')*p(m,:));         ex_hess(1:nparams-nout,1:nparams-nout) = kron(a, X);         ex_hess(bb_start:nparams, bb_start:nparams) = a.*ones(net.nout, net.nout);         temp = kron(a, x(m,:));         ex_hess(bb_start:nparams, 1:nparams-nout) = temp;         ex_hess(1:nparams-nout, bb_start:nparams) = temp';         hdata = hdata + ex_hess;      end    otherwise      error(['Unknown activation function ', net.outfn]);    endend[h, hdata] = hbayes(net, hdata);function hdata = rearrange_hess(net, j, out_hess, hdata)% Because all the biases come after all the input weights,% we have to rearrange the blocks that make up the network Hessian.% This function assumes that we are on the jth output and that all outputs% are independent.bb_start = net.nwts - net.nout + 1;	% Start of bias weights blockob_start = 1+(j-1)*net.nin; 	% Start of weight block for jth outputob_end = j*net.nin;         	% End of weight block for jth outputb_index = bb_start+(j-1);   	% Index of bias weight% Put input weight block in right placehdata(ob_start:ob_end, ob_start:ob_end) = out_hess(1:net.nin, 1:net.nin);% Put second derivative of bias weight in right placehdata(b_index, b_index) = out_hess(net.nin+1, net.nin+1);% Put cross terms (input weight v bias weight) in right placehdata(b_index, ob_start:ob_end) = out_hess(net.nin+1,1:net.nin);hdata(ob_start:ob_end, b_index) = out_hess(1:net.nin, net.nin+1);return 

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -