⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 olgd.m

📁 麻省理工学院的人工智能工具箱,很珍贵,希望对大家有用!
💻 M
字号:
function [net, options, errlog, pointlog] = olgd(net, options, x, t)%OLGD	On-line gradient descent optimization.%%	Description%	[NET, OPTIONS, ERRLOG, POINTLOG] = OLGD(NET, OPTIONS, X, T) uses  on-%	line gradient descent to find a local minimum of the error function%	for the network NET computed on the input data X and target values T.%	A log of the error values after each cycle is (optionally) returned%	in ERRLOG, and a log of the points visited is (optionally) returned%	in POINTLOG. Because the gradient is computed on-line (i.e. after%	each pattern) this can be quite inefficient in Matlab.%%	The error function value at final weight vector is returned in%	OPTIONS(8).%%	The optional parameters have the following interpretations.%%	OPTIONS(1) is set to 1 to display error values; also logs error%	values in the return argument ERRLOG, and the points visited in the%	return argument POINTSLOG.  If OPTIONS(1) is set to 0, then only%	warning messages are displayed.  If OPTIONS(1) is -1, then nothing is%	displayed.%%	OPTIONS(2) is the precision required for the value of X at the%	solution. If the absolute difference between the values of X between%	two successive steps is less than OPTIONS(2), then this condition is%	satisfied.%%	OPTIONS(3) is the precision required of the objective function at the%	solution.  If the absolute difference between the error functions%	between two successive steps is less than OPTIONS(3), then this%	condition is satisfied. Both this and the previous condition must be%	satisfied for termination. Note that testing the function value at%	each iteration roughly halves the speed of the algorithm.%%	OPTIONS(5) determines whether the patterns are sampled randomly with%	replacement. If it is 0 (the default), then patterns are sampled in%	order.%%	OPTIONS(6) determines if the learning rate decays.  If it is 1 then%	the learning rate decays at a rate of 1/T.  If it is 0 (the default)%	then the learning rate is constant.%%	OPTIONS(9) should be set to 1 to check the user defined gradient%	function.%%	OPTIONS(10) returns the total number of function evaluations%	(including those in any line searches).%%	OPTIONS(11) returns the total number of gradient evaluations.%%	OPTIONS(14) is the maximum number of iterations (passes through the%	complete pattern set); default 100.%%	OPTIONS(17) is the momentum; default 0.5.%%	OPTIONS(18) is the learning rate; default 0.01.%%	See also%	GRADDESC%%	Copyright (c) Ian T Nabney (1996-2001)%  Set up the options.if length(options) < 18  error('Options vector too short')endif (options(14))  niters = options(14);else  niters = 100;end% Learning rate: must be positiveif (options(18) > 0)  eta = options(18);else  eta = 0.01;end% Save initial learning rate for annealinglr = eta;% Momentum term: allow zero momentumif (options(17) >= 0)  mu = options(17);else  mu = 0.5;endpakstr = [net.type, 'pak'];unpakstr = [net.type, 'unpak'];% Extract initial weights from the networkw = feval(pakstr, net);display = options(1);% Work out if we need to compute f at each iteration.% Needed if display results or if termination% criterion requires it.fcneval = (display | options(3));%  Check gradientsif (options(9))  feval('gradchek', w, 'neterr', 'netgrad', net, x, t);enddwold = zeros(1, length(w));fold = 0; % Must be initialised so that termination test can be performedndata = size(x, 1);if fcneval  fnew = neterr(w, net, x, t);  options(10) = options(10) + 1;  fold = fnew;endj = 1;if nargout >= 3  errlog(j, :) = fnew;  if nargout == 4    pointlog(j, :) = x;  endend%  Main optimization loop.while j <= niters  wold = w;  if options(5)    % Randomise order of pattern presentation: with replacement    pnum = ceil(rand(ndata, 1).*ndata);  else    pnum = 1:ndata;  end  for k = 1:ndata    grad = netgrad(w, net, x(pnum(k),:), t(pnum(k),:));    if options(6)      % Let learning rate decrease as 1/t      lr = eta/((j-1)*ndata + k);    end    dw = mu*dwold - lr*grad;    w =  w + dw;    dwold = dw;  end  options(11) = options(11) + 1;  % Increment gradient evaluation count  if fcneval    fold = fnew;    fnew = neterr(w, net, x, t);    options(10) = options(10) + 1;  end  if display    fprintf(1, 'Iteration  %5d  Error %11.8f\n', j, fnew);  end  j = j + 1;  if nargout >= 3    errlog(j) = fnew;    if nargout == 4      pointlog(j, :) = w;    end  end  if (max(abs(w - wold)) < options(2) & abs(fnew - fold) < options(3))    % Termination criteria are met    options(8) = fnew;    net = feval(unpakstr, net, w);    return;  endendif fcneval  options(8) = fnew;else  % Return error on entire dataset  options(8) = neterr(w, net, x, t);  options(10) = options(10) + 1;endif (options(1) >= 0)  disp('Warning: Maximum number of iterations has been exceeded in olgd');endnet = feval(unpakstr, net, w);

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -