📄 errors_snn.m
字号:
function [errors, exp_errors] = errors_snn(nets, datasets, do_not_use)%ERRORS_SNN compute cost and expected cost for nets.%% Syntax%% [errors, exp_errors] = errors_snn(nets, datasets, do_not_use)%% nets - net_structs% datasets - dataset_structs% do_not_use - indices for networks not to be used in computing% exp_errrors%% errors - costs% exp_errors - expected costs %if (nargin < 3) do_not_use = [];enddata = datasets(1).data;M = size(nets,2);MU = size(data.P,2);N = size(nets(1).biases{nets(1).numLayers},1);g = getg_snn(nets(1), data);fn = nets(1).costFcn.fn;i0 = zeros(N, MU);i0(find(~isnan(g))) = 1;%#function se_snn%#function relerr_snn%#function loglikelihood_snn %#function crosslogistic_snn%#function crossentropy_snnE = zeros(N, MU, M);for m = 1:M ym = simff_snn(nets(1,m), data); if isstr(fn) ii = find(~isnan(g)); E(ii+(m-1)*N*MU) = feval(fn, ym(ii), data.T(ii)); else for i = 1:N ii = find(~isnan(g(i,:))); E(i, ii, m) = feval(fn{i,1}, ym(i, ii), data.T(i, ii)); end endenderrors.validation = zeros(1,M);errors.training = zeros(1,M);for m = 1:M nu = datasets(m).val_ind; ii = find(i0(:,nu)); g_tmp = g(:, nu); nf = 1/sum(g_tmp(find(~isnan(g_tmp)))); tmp = nf * g(:, nu) .* E(:, nu, m); errors.validation(m) = sum(tmp(ii)); nu = datasets(m).trg_ind; ii = find(i0(:,nu)); g_tmp = g(:, nu); nf = 1/sum(g_tmp(find(~isnan(g_tmp)))); tmp = nf * g(:, nu) .* E(:, nu, m); errors.training(m) = sum(tmp(ii)); endif (nargin > 1) qval = zeros(N, MU, M); qtr = zeros(N, MU, M); for m = 1:M nu = datasets(m).val_ind; nu = setdiff(nu, do_not_use); qval(:, nu, m) = i0(:, nu); nu = datasets(m).trg_ind; nu = setdiff(nu, do_not_use); qtr(:, nu, m) = i0(:, nu); end nval = sum(qval,3); ntr = sum(qtr,3); E_m_avr_val = zeros(N, MU); ii = find(nval); tmp = sum(qval.*E, 3); E_m_avr_val(ii) = tmp(ii)./nval(ii); E_m_avr_tr = zeros(N, MU); ii = find(ntr); tmp = sum(qtr.*E, 3); E_m_avr_tr(ii) = tmp(ii)./ntr(ii); for m = 1:M nu = datasets(m).val_ind; ii = find(i0(:,nu)); g_tmp = g(:, nu); nf = 1/sum(g_tmp(find(~isnan(g_tmp)))); tmp = nf * g(:, nu) .* E_m_avr_val(:, nu); exp_errors.validation(m) = sum(tmp(ii)); nu = datasets(m).trg_ind; ii = find(i0(:,nu)); g_tmp = g(:, nu); nf = 1/sum(g_tmp(find(~isnan(g_tmp)))); tmp = nf * g(:, nu) .* E_m_avr_tr(:, nu); exp_errors.training(m) = sum(tmp(ii)); endend
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -