⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 errors_snn.m

📁 神经网络的工具箱, 神经网络的工具箱,
💻 M
字号:
function [errors, exp_errors] = errors_snn(nets, datasets, do_not_use)%ERRORS_SNN compute cost and expected cost for nets.%%  Syntax%%   [errors, exp_errors] = errors_snn(nets, datasets, do_not_use)%%     nets     - net_structs%     datasets - dataset_structs%     do_not_use - indices for networks not to be used in computing%                  exp_errrors%%     errors     - costs%     exp_errors - expected costs %if (nargin < 3)   do_not_use = [];enddata = datasets(1).data;M = size(nets,2);MU = size(data.P,2);N = size(nets(1).biases{nets(1).numLayers},1);g = getg_snn(nets(1), data);fn = nets(1).costFcn.fn;i0 = zeros(N, MU);i0(find(~isnan(g))) = 1;%#function se_snn%#function relerr_snn%#function loglikelihood_snn %#function crosslogistic_snn%#function crossentropy_snnE = zeros(N, MU, M);for m = 1:M    ym = simff_snn(nets(1,m), data);    if isstr(fn)       ii = find(~isnan(g));       E(ii+(m-1)*N*MU) = feval(fn, ym(ii), data.T(ii));     else       for i = 1:N           ii = find(~isnan(g(i,:)));           E(i, ii, m) = feval(fn{i,1}, ym(i, ii), data.T(i, ii));       end    endenderrors.validation = zeros(1,M);errors.training = zeros(1,M);for m = 1:M        nu = datasets(m).val_ind;    ii = find(i0(:,nu));    g_tmp = g(:, nu);    nf = 1/sum(g_tmp(find(~isnan(g_tmp))));    tmp = nf * g(:, nu) .* E(:, nu, m);    errors.validation(m) = sum(tmp(ii));    nu = datasets(m).trg_ind;    ii = find(i0(:,nu));    g_tmp = g(:, nu);    nf = 1/sum(g_tmp(find(~isnan(g_tmp))));    tmp = nf * g(:, nu) .* E(:, nu, m);    errors.training(m) = sum(tmp(ii)); endif (nargin > 1)    qval = zeros(N, MU, M);    qtr = zeros(N, MU, M);    for m = 1:M        nu = datasets(m).val_ind;	nu = setdiff(nu, do_not_use);        qval(:, nu, m) = i0(:, nu);        nu = datasets(m).trg_ind;	nu = setdiff(nu, do_not_use);        qtr(:, nu, m) = i0(:, nu);    end    nval = sum(qval,3);     ntr = sum(qtr,3);     E_m_avr_val = zeros(N, MU);    ii = find(nval);    tmp = sum(qval.*E, 3);     E_m_avr_val(ii) = tmp(ii)./nval(ii);    E_m_avr_tr = zeros(N, MU);    ii = find(ntr);    tmp = sum(qtr.*E, 3);     E_m_avr_tr(ii) = tmp(ii)./ntr(ii);    for m = 1:M        nu = datasets(m).val_ind;        ii = find(i0(:,nu));        g_tmp = g(:, nu);        nf = 1/sum(g_tmp(find(~isnan(g_tmp))));        tmp = nf * g(:, nu) .* E_m_avr_val(:, nu);        exp_errors.validation(m) = sum(tmp(ii));        nu = datasets(m).trg_ind;        ii = find(i0(:,nu));        g_tmp = g(:, nu);        nf = 1/sum(g_tmp(find(~isnan(g_tmp))));        tmp = nf * g(:, nu) .* E_m_avr_tr(:, nu);        exp_errors.training(m) = sum(tmp(ii));    endend

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -