📄 c_prediction_snn.m
字号:
function [c_point_pred, noise_net, noise_record] = c_prediction_snn(elevel, nets, datasets, alpha, one_net, blocksize)%C_PREDICTION_SNN Estimate c_prediction%% Syntax%% [c_point_pred, noise_net, tr_info_noise_net] = ...% c_prediction_snn(e_level, nets, datasets, alpha)%% Description%% C_PREDICTION_SNN takes% e_level - error level.% nets - [1 x M] net_structs of trained networks with cost % function WCF_SNN.% datasets - [1 x M] matrix of dataset_structs containing% information on the data used in training 'nets'. % alpha - [1 x M] matrix of network weighting factors.% and returns% c_point_pred - c_prediction% noise_net - a net_struct for estimating noise on input data.% tr_info_noise_net - information about training of 'noise_net'.%% See also%% PREDICTION_SNN, C_CONFIDENCE_SNN, BALANCE_SNN%data = datasets(1).data;M = size(nets,2);N = size(nets(1).biases{nets(1).numLayers},1);[NI, MU] = size(data.P);g = getg_snn(nets(1), data);errf = nets(1).costFcn.fn;if nofieldorempty_snn(data, 'useT') data.useT = ones(N, MU);end% compute conf_err_estimate(x^nu)[y_av, conf_err_estimate] = simff_avr_snn(nets, alpha, data.P);% compute pred_var_estimate(x^nu) and noise_net% compute average netif (nargin < 5) stdout_snn('Summarizing networks to one for error estimation...\n'); one_net = summarize_snn(nets, data, alpha); stdout_snn('...done\n');endif (nargin <6) blocksize = 1;endy_validation = unbiased_average_snn(nets, alpha, datasets);noise_data.P = data.P;%#function se_snn%#function relerr_snn%#function loglikelihood_snn %#function crosslogistic_snn%#function crossentropy_snnif isstr(errf) %noise_data.T = max(feval(errf, data.T, y_validation) -conf_var_estimate, 0); noise_data.T = feval(errf, data.T, y_validation);elseif iscell(errf) for i = 1:N %noise_data.T(i,:) ... % = max( feval(errf(i), data.T(i,:), y_validation(i,:)) ... % - conf_var_estimate(i,:), 0); noise_data.T(i,:) = feval(errf{i}, data.T(i,:), y_validation(i,:)); endelse error('Incorrect format for output errorfunction');endnoise_data.T(find(noise_data.T == 0)) = eps;if isfield(data, 'useT') noise_data.useT = data.useT;endif isfield(data, 'gmu') noise_data.gmu = data.gmu;endstdout_snn('Computing NN for error estimation...\n');[noise_net, noise_record] = train_noise_snn(one_net, noise_data, blocksize);stdout_snn('...done\n');pred_err_estimate = simff_snn(noise_net, data);% compute total_err_estimate(x^nu)total_err_estimate = max(conf_err_estimate, pred_err_estimate);% compute total_err(x^nu)total_err = zeros(N, MU);if isstr(errf) ind = find(data.useT); total_err(ind) = feval(errf, y_validation(ind), data.T(ind));elseif iscell(errf) for i = 1:N mu = find(data.useT(i,:)); total_err(i,mu) = feval(errf{i}, y_validation(i,mu), data.T(i,mu)); endelse error('Incorrect format for output errorfunction');end% compute c_point_predfor i = 1:N mu = find(data.useT(i,:)); d3 = g(i,mu); d3 = d3(:)./(sum(d3(:))); [d1, d2] = ... sort(-(total_err(i,mu)./(total_err_estimate(i,mu)))); c_point_pred(i,1) = -d1(min(find( cumsum(d3(d2))>elevel ))); end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -