📄 summarize_snn.m
字号:
function net = summarize_snn(nets, data, alpha)%SUMMARIZE_SNN summarize an ensemble of nets in one net.%% Syntax%% net = summarize_snn(nets, wcfdata, alpha)%% Description%% SUMMARIZE_SNN summarizes an ensemble of networks by training % one network on the weighted averaged output of the ensemble.%% SUMMARIZE_SNN(nets, wcfdata, alpha) takes% nets - [1 x M] matrix of net_structs containing ensemble of networks.% wcfdata - wcfdata_struct containing dataset which nets are% trained on.% alpha - [1 x M] matrix of network weighting factors.% and returns % net - a net_struct with a network trained on the weighted% average output of the ensemble.%% See also%% SIMFF_AVR_SNN%[NI, MU] = size(data.P);N = size(nets(1).biases{nets(1).numLayers},1);M = size(nets,2);g = getg_snn(nets(1), data);errf = nets(1).costFcn.fn;names = fieldnames(data);for f = 1:size(names,1)% next two lines equal to this one: % eval(['data.' names{f} '= [data.' names{f} ' data.' names{f} '];']); cont = subsref(data, substruct('.', names{f})); data = subsasgn(data, substruct('.', names{f}) , [cont cont]);endtr_ind = 1:MU;vv_ind = (MU+1):(2*MU);covie = cov(data.P(:, vv_ind)');invcov = real(sqrtm(pinv(covie)));data.P(:, vv_ind) = data.P(:, vv_ind) + invcov*randn(NI, MU)*0.08;yall = zeros(N, 2*MU, M);for m = 1:M yall(:,:,m) = simff_snn(nets(1,m), data);enddata.T(:, tr_ind) = average_outputs_snn(yall(:,tr_ind,:), alpha, errf);data.T(:, vv_ind) = average_outputs_snn(yall(:,vv_ind,:), alpha, errf);for m = 1:M distance(m) = wef_snn(yall(:,:,m), data.T(:, tr_ind), g, errf); end[dummy, index] = min(distance);clear yall;indices = {tr_ind; vv_ind};dataLV = subset_wcfdata_snn(data, tr_ind);dataVV = subset_wcfdata_snn(data, vv_ind);net = train_snn(nets(1,index), dataLV, dataVV);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -