📄 unbiased_average_snn.m
字号:
function y_validation = unbiased_average_snn(nets, alpha, datasets)%UNBIASED_AVERAGE_SNN Unbiased weighted average.%% Syntax%% y_uav = unbiased_average_snn(nets, alpha, datasets)%% Description%% UNBIASED_AVERAGE_SNN computes an unbiased weigthed average output% for the ensemble of 'nets', i.e. for each pattern the averaging is% only over the networks in the ensemble which did not use that% pattern in training. %% UNBIASED_AVERAGE_SNN(nets, alpha, datasets) takes% nets - [1 x M] matrix of net_structs trained with % costFcn = wcf_snn.% alpha - [1 x M] matrix of network weighting factors. % datasets - [1 x M] matrix of dataset_structs containing% information on the data used in training 'nets'. % and returns% y_uav - unbiased average.% data = datasets(1).data;M = size(nets, 2);N = size(nets(1).biases{nets(1).numLayers},1);[NI, MU] = size(data.P);errf = nets(1).costFcn.fn;ym = zeros(N, MU, M);q = sparse(MU, M);for m = 1:M ym(:,:,m) = simff_snn(nets(1,m), data); % q(mu, m) is 1 if pattern mu is in the validation set of network m q(datasets(m).val_ind, m) = 1; endfor mu = 1:MU m = find(q(MU,:)); y_validation(:, mu) = average_outputs_snn(ym(:,mu,m), alpha(m), errf);end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -