⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 net_struct_snn.m

📁 神经网络的工具箱, 神经网络的工具箱,
💻 M
字号:
function net = net_struct_snn (s, tf, trainFcn)%NET_STRUCT_SNN Create a feed-forward network in net_struct format.%%  Syntax%%   net_struct = net_struct_snn([S0 S1 ... SL], {TF1 TF2 ... TFL})%   net_struct = net_struct_snn([S0 S1 ... SL], {TF1 TF2 ... TFL}, trainFcn)%   net_struct = net_struct_snn(...%                   [S0 S1 ... SL], {TF1 TF2 ... TFL}, trainFcn, costFcn)%%  Description%%   NET_STRUCT_SNN takes%     Sl  - Number of units in the l'th layer, for L layers.%     TFl - Transfer function for the l'th layer. %     trainFcn - The network training function (default TRAINLM_SNN).%     costFcn - The cost fucntion which is minimized in training%               (default WCF_SNN). %   and returns a net_struct that can be used by TRAIN_SNN.%%   In the SNN Feed Forward Neural Network toolbox, all parameters%   regarding the network are stored in a net_struct containing the%   following fields:%%   net_struct.numLayers   - number of layers in the network (L)%   net_sturct.transferFcn - 1 x L cell matrix of transfer function names. %   net_struct.biases      - 1 x L cell matrix of N(l-1) x 1 matrices of%                            unit biases.%   net_struct.weights     - 1 x L cell matrix of N(l-1) x Nl matrices of %                            connection weights.%   net_struct.trainFcn    - trainfcn_struct with trainings%                            algorithm related parameters.%   net_struct.costFcn    - costfcn_struct with cost function%                            related parameters.%   (L = number of layers, Nl = number of units in l'th layer)%%  Example%%   net = net_struct_snn([11 5 6], {'tansigtf_snn' 'lintf_snn'}, 'trainlm_snn');%%  See also%%    TRAIN_SNN, TRANSFERFCN_SNN, TRAINFCN_SNN, COSTFCN_SNN,%    TRAINFCN_STRUCT_SNN, COSTFCN_STRUCT_SNN%if (nargin < 4)   costFcn = 'wcf_snn'; endif (nargin < 3)   trainFcn = 'trainlm_snn';endnet.numLayers = size(s,2) - 1;if (size(tf,2) ~= net.numLayers)   error('TF and S must be equal is size');endnet.transferFcn = tf;for i = 1:net.numLayers   net.biases{i} = 0.1*randn(s(1,i+1),1);   net.weights{i} = 0.1*randn(s(1,i+1), s(1,i)); end%#function traingd_snn traincgp_snn trainlm_snnnet.trainFcn = feval(trainFcn, 'pdefaults');%#function wcf_snnnet.costFcn = feval(costFcn, 'pdefaults');

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -