📄 os_task.c
字号:
#endif
/*$PAGE*/
/*
*********************************************************************************************************
* CREATE A TASK (Extended Version)
*
* Description: This function is used to have uC/OS-II manage the execution of a task. Tasks can either
* be created prior to the start of multitasking or by a running task. A task cannot be
* created by an ISR. This function is similar to OSTaskCreate() except that it allows
* additional information about a task to be specified.
*
* Arguments : task is a pointer to the task's code
*
* pdata is a pointer to an optional data area which can be used to pass parameters to
* the task when the task first executes. Where the task is concerned it thinks
* it was invoked and passed the argument 'pdata' as follows:
*
* void Task (void *pdata)
* {
* for (;;) {
* Task code;
* }
* }
*
* ptos is a pointer to the task's top of stack. If the configuration constant
* OS_STK_GROWTH is set to 1, the stack is assumed to grow downward (i.e. from high
* memory to low memory). 'pstk' will thus point to the highest (valid) memory
* location of the stack. If OS_STK_GROWTH is set to 0, 'pstk' will point to the
* lowest memory location of the stack and the stack will grow with increasing
* memory locations. 'pstk' MUST point to a valid 'free' data item.
*
* prio is the task's priority. A unique priority MUST be assigned to each task and the
* lower the number, the higher the priority.
*
* id is the task's ID (0..65535)
*
* pbos is a pointer to the task's bottom of stack. If the configuration constant
* OS_STK_GROWTH is set to 1, the stack is assumed to grow downward (i.e. from high
* memory to low memory). 'pbos' will thus point to the LOWEST (valid) memory
* location of the stack. If OS_STK_GROWTH is set to 0, 'pbos' will point to the
* HIGHEST memory location of the stack and the stack will grow with increasing
* memory locations. 'pbos' MUST point to a valid 'free' data item.
*
* stk_size is the size of the stack in number of elements. If OS_STK is set to INT8U,
* 'stk_size' corresponds to the number of bytes available. If OS_STK is set to
* INT16U, 'stk_size' contains the number of 16-bit entries available. Finally, if
* OS_STK is set to INT32U, 'stk_size' contains the number of 32-bit entries
* available on the stack.
*
* pext is a pointer to a user supplied memory location which is used as a TCB extension.
* For example, this user memory can hold the contents of floating-point registers
* during a context switch, the time each task takes to execute, the number of times
* the task has been switched-in, etc.
*
* opt contains additional information (or options) about the behavior of the task. The
* LOWER 8-bits are reserved by uC/OS-II while the upper 8 bits can be application
* specific. See OS_TASK_OPT_??? in uCOS-II.H.
*
* Returns : OS_NO_ERR if the function was successful.
* OS_PRIO_EXIT if the task priority already exist
* (each task MUST have a unique priority).
* OS_PRIO_INVALID if the priority you specify is higher that the maximum allowed
* (i.e. > OS_LOWEST_PRIO)
*********************************************************************************************************
*/
/*$PAGE*/
#if OS_TASK_CREATE_EXT_EN > 0
INT8U OSTaskCreateExt (void (*task)(void *pd),
void *pdata,
OS_STK *ptos,
INT8U prio,
INT16U id,
OS_STK *pbos,
INT32U stk_size,
void *pext,
INT16U opt)
{
#if OS_CRITICAL_METHOD == 3 /* Allocate storage for CPU status register */
OS_CPU_SR cpu_sr;
#endif
OS_STK *psp;
INT8U err;
#if OS_ARG_CHK_EN > 0
if (prio > OS_LOWEST_PRIO)
{ /* Make sure priority is within allowable range */
return (OS_PRIO_INVALID);
}
#endif
OS_ENTER_CRITICAL();
if (OSTCBPrioTbl[prio] == (OS_TCB *)0)
{ /* Make sure task doesn't already exist at this priority */
OSTCBPrioTbl[prio] = (OS_TCB *)1; /* Reserve the priority to prevent others from doing ... */
/* ... the same thing until task is created. */
OS_EXIT_CRITICAL();
if (((opt & OS_TASK_OPT_STK_CHK) != 0x0000) || /* See if stack checking has been enabled */
((opt & OS_TASK_OPT_STK_CLR) != 0x0000))
{ /* See if stack needs to be cleared */
#if OS_STK_GROWTH == 1
(void)memset(pbos, 0, stk_size * sizeof(OS_STK));
#else
(void)memset(ptos, 0, stk_size * sizeof(OS_STK));
#endif
}
psp = (OS_STK *)OSTaskStkInit(task, pdata, ptos, opt); /* Initialize the task's stack */
err = OS_TCBInit(prio, psp, pbos, id, stk_size, pext, opt);
if (err == OS_NO_ERR)
{
OS_ENTER_CRITICAL();
OSTaskCtr++; /* Increment the #tasks counter */
OS_EXIT_CRITICAL();
if (OSRunning == TRUE)
{ /* Find HPT if multitasking has started */
OS_Sched();
}
}
else
{
OS_ENTER_CRITICAL();
OSTCBPrioTbl[prio] = (OS_TCB *)0; /* Make this priority avail. to others */
OS_EXIT_CRITICAL();
}
return (err);
}
OS_EXIT_CRITICAL();
return (OS_PRIO_EXIST);
}
#endif
/*$PAGE*/
/*
*********************************************************************************************************
* DELETE A TASK
*
* Description: This function allows you to delete a task. The calling task can delete itself by
* its own priority number. The deleted task is returned to the dormant state and can be
* re-activated by creating the deleted task again.
*
* Arguments : prio is the priority of the task to delete. Note that you can explicitely delete
* the current task without knowing its priority level by setting 'prio' to
* OS_PRIO_SELF.
*
* Returns : OS_NO_ERR if the call is successful
* OS_TASK_DEL_IDLE if you attempted to delete uC/OS-II's idle task
* OS_PRIO_INVALID if the priority you specify is higher that the maximum allowed
* (i.e. >= OS_LOWEST_PRIO) or, you have not specified OS_PRIO_SELF.
* OS_TASK_DEL_ERR if the task you want to delete does not exist
* OS_TASK_DEL_ISR if you tried to delete a task from an ISR
*
* Notes : 1) To reduce interrupt latency, OSTaskDel() 'disables' the task:
* a) by making it not ready
* b) by removing it from any wait lists
* c) by preventing OSTimeTick() from making the task ready to run.
* The task can then be 'unlinked' from the miscellaneous structures in uC/OS-II.
* 2) The function OS_Dummy() is called after OS_EXIT_CRITICAL() because, on most processors,
* the next instruction following the enable interrupt instruction is ignored.
* 3) An ISR cannot delete a task.
* 4) The lock nesting counter is incremented because, for a brief instant, if the current
* task is being deleted, the current task would not be able to be rescheduled because it
* is removed from the ready list. Incrementing the nesting counter prevents another task
* from being schedule. This means that an ISR would return to the current task which is
* being deleted. The rest of the deletion would thus be able to be completed.
*********************************************************************************************************
*/
/*$PAGE*/
#if OS_TASK_DEL_EN > 0
INT8U OSTaskDel (INT8U prio)
{
#if OS_CRITICAL_METHOD == 3 /* Allocate storage for CPU status register */
OS_CPU_SR cpu_sr;
#endif
#if OS_EVENT_EN > 0
OS_EVENT *pevent;
#endif
#if (OS_VERSION >= 251) && (OS_FLAG_EN > 0) && (OS_MAX_FLAGS > 0)
OS_FLAG_NODE *pnode;
#endif
OS_TCB *ptcb;
//BOOLEAN self;
if (OSIntNesting > 0)
{ /* See if trying to delete from ISR */
return (OS_TASK_DEL_ISR);
}
#if OS_ARG_CHK_EN > 0
if (prio == OS_IDLE_PRIO)
{ /* Not allowed to delete idle task */
return (OS_TASK_DEL_IDLE);
}
if (prio >= OS_LOWEST_PRIO && prio != OS_PRIO_SELF)
{ /* Task priority valid ? */
return (OS_PRIO_INVALID);
}
#endif
OS_ENTER_CRITICAL();
if (prio == OS_PRIO_SELF)
{ /* See if requesting to delete self */
prio = OSTCBCur->OSTCBPrio; /* Set priority to delete to current */
}
ptcb = OSTCBPrioTbl[prio];
if (ptcb != (OS_TCB *)0)
{ /* Task to delete must exist */
if ((OSRdyTbl[ptcb->OSTCBY] &= ~ptcb->OSTCBBitX) == 0x00)
{ /* Make task not ready */
OSRdyGrp &= ~ptcb->OSTCBBitY;
}
#if OS_EVENT_EN > 0//从事件的等待任务列表中删除任务
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -