📄 mempool.c
字号:
/* Copyright (c) 2007-2008, The Tor Project, Inc. */
/* See LICENSE for licensing information */
/* $Id$ */
#if 1
/* Tor dependencies */
#include "orconfig.h"
#endif
#include <stdlib.h>
#include <string.h>
#include "torint.h"
#define MEMPOOL_PRIVATE
#include "mempool.h"
#define LAZY_CHUNK_SORT
/* OVERVIEW:
*
* This is an implementation of memory pools for Tor cells. It may be
* useful for you too.
*
* Generally, a memory pool is an allocation strategy optimized for large
* numbers of identically-sized objects. Rather than the elaborate arena
* and coalescing strategies you need to get good performance for a
* general-purpose malloc(), pools use a series of large memory "chunks",
* each of which is carved into a bunch of smaller "items" or
* "allocations".
*
* To get decent performance, you need to:
* - Minimize the number of times you hit the underlying allocator.
* - Try to keep accesses as local in memory as possible.
* - Try to keep the common case fast.
*
* Our implementation uses three lists of chunks per pool. Each chunk can
* be either "full" (no more room for items); "empty" (no items); or
* "used" (not full, not empty). There are independent doubly-linked
* lists for each state.
*
* CREDIT:
*
* I wrote this after looking at 3 or 4 other pooling allocators, but
* without copying. The strategy this most resembles (which is funny,
* since that's the one I looked at longest ago) is the pool allocator
* underlying Python's obmalloc code. Major differences from obmalloc's
* pools are:
* - We don't even try to be threadsafe.
* - We only handle objects of one size.
* - Our list of empty chunks is doubly-linked, not singly-linked.
* (This could change pretty easily; it's only doubly-linked for
* consistency.)
* - We keep a list of full chunks (so we can have a "nuke everything"
* function). Obmalloc's pools leave full chunks to float unanchored.
*
* LIMITATIONS:
* - Not even slightly threadsafe.
* - Likes to have lots of items per chunks.
* - One pointer overhead per allocated thing. (The alternative is
* something like glib's use of an RB-tree to keep track of what
* chunk any given piece of memory is in.)
* - Only aligns allocated things to void* level: redefign ALIGNMENT_TYPE
* if you need doubles.
* - Could probably be optimized a bit; the representation contains
* a bit more info than it really needs to have.
*/
#if 1
/* Tor dependencies */
#include "orconfig.h"
#include "util.h"
#include "compat.h"
#include "log.h"
#define ALLOC(x) tor_malloc(x)
#define FREE(x) tor_free(x)
#define ASSERT(x) tor_assert(x)
#undef ALLOC_CAN_RETURN_NULL
#define TOR
//#define ALLOC_ROUNDUP(p) tor_malloc_roundup(p)
/* End Tor dependencies */
#else
/* If you're not building this as part of Tor, you'll want to define the
* following macros. For now, these should do as defaults.
*/
#include <assert.h>
#define PREDICT_UNLIKELY(x) (x)
#define PREDICT_LIKELY(x) (x)
#define ALLOC(x) malloc(x)
#define FREE(x) free(x)
#define STRUCT_OFFSET(tp, member) \
((off_t) (((char*)&((tp*)0)->member)-(char*)0))
#define ASSERT(x) assert(x)
#define ALLOC_CAN_RETURN_NULL
#endif
/* Tuning parameters */
/** Largest type that we need to ensure returned memory items are aligned to.
* Change this to "double" if we need to be safe for structs with doubles. */
#define ALIGNMENT_TYPE void *
/** Increment that we need to align allocated. */
#define ALIGNMENT sizeof(ALIGNMENT_TYPE)
/** Largest memory chunk that we should allocate. */
#define MAX_CHUNK (8*(1L<<20))
/** Smallest memory chunk size that we should allocate. */
#define MIN_CHUNK 4096
typedef struct mp_allocated_t mp_allocated_t;
typedef struct mp_chunk_t mp_chunk_t;
/** Holds a single allocated item, allocated as part of a chunk. */
struct mp_allocated_t {
/** The chunk that this item is allocated in. This adds overhead to each
* allocated item, thus making this implementation inappropriate for
* very small items. */
mp_chunk_t *in_chunk;
union {
/** If this item is free, the next item on the free list. */
mp_allocated_t *next_free;
/** If this item is not free, the actual memory contents of this item.
* (Not actual size.) */
char mem[1];
/** An extra element to the union to insure correct alignment. */
ALIGNMENT_TYPE _dummy;
} u;
};
/** 'Magic' value used to detect memory corruption. */
#define MP_CHUNK_MAGIC 0x09870123
/** A chunk of memory. Chunks come from malloc; we use them */
struct mp_chunk_t {
unsigned long magic; /**< Must be MP_CHUNK_MAGIC if this chunk is valid. */
mp_chunk_t *next; /**< The next free, used, or full chunk in sequence. */
mp_chunk_t *prev; /**< The previous free, used, or full chunk in sequence. */
mp_pool_t *pool; /**< The pool that this chunk is part of. */
/** First free item in the freelist for this chunk. Note that this may be
* NULL even if this chunk is not at capacity: if so, the free memory at
* next_mem has not yet been carved into items.
*/
mp_allocated_t *first_free;
int n_allocated; /**< Number of currently allocated items in this chunk. */
int capacity; /**< Number of items that can be fit into this chunk. */
size_t mem_size; /**< Number of usable bytes in mem. */
char *next_mem; /**< Pointer into part of <b>mem</b> not yet carved up. */
char mem[1]; /**< Storage for this chunk. (Not actual size.) */
};
/** Number of extra bytes needed beyond mem_size to allocate a chunk. */
#define CHUNK_OVERHEAD (sizeof(mp_chunk_t)-1)
/** Given a pointer to a mp_allocated_t, return a pointer to the memory
* item it holds. */
#define A2M(a) (&(a)->u.mem)
/** Given a pointer to a memory_item_t, return a pointer to its enclosing
* mp_allocated_t. */
#define M2A(p) ( ((char*)p) - STRUCT_OFFSET(mp_allocated_t, u.mem) )
#ifdef ALLOC_CAN_RETURN_NULL
/** If our ALLOC() macro can return NULL, check whether <b>x</b> is NULL,
* and if so, return NULL. */
#define CHECK_ALLOC(x) \
if (PREDICT_UNLIKELY(!x)) { return NULL; }
#else
/** If our ALLOC() macro can't return NULL, do nothing. */
#define CHECK_ALLOC(x)
#endif
/** Helper: Allocate and return a new memory chunk for <b>pool</b>. Does not
* link the chunk into any list. */
static mp_chunk_t *
mp_chunk_new(mp_pool_t *pool)
{
size_t sz = pool->new_chunk_capacity * pool->item_alloc_size;
#ifdef ALLOC_ROUNDUP
size_t alloc_size = CHUNK_OVERHEAD + sz;
mp_chunk_t *chunk = ALLOC_ROUNDUP(&alloc_size);
#else
mp_chunk_t *chunk = ALLOC(CHUNK_OVERHEAD + sz);
#endif
#ifdef MEMPOOL_STATS
++pool->total_chunks_allocated;
#endif
CHECK_ALLOC(chunk);
memset(chunk, 0, sizeof(mp_chunk_t)); /* Doesn't clear the whole thing. */
chunk->magic = MP_CHUNK_MAGIC;
#ifdef ALLOC_ROUNDUP
chunk->mem_size = alloc_size - CHUNK_OVERHEAD;
chunk->capacity = chunk->mem_size / pool->item_alloc_size;
#else
chunk->capacity = pool->new_chunk_capacity;
chunk->mem_size = sz;
#endif
chunk->next_mem = chunk->mem;
chunk->pool = pool;
return chunk;
}
/** Take a <b>chunk</b> that has just been allocated or removed from
* <b>pool</b>'s empty chunk list, and add it to the head of the used chunk
* list. */
static INLINE void
add_newly_used_chunk_to_used_list(mp_pool_t *pool, mp_chunk_t *chunk)
{
chunk->next = pool->used_chunks;
if (chunk->next)
chunk->next->prev = chunk;
pool->used_chunks = chunk;
ASSERT(!chunk->prev);
}
/** Return a newly allocated item from <b>pool</b>. */
void *
mp_pool_get(mp_pool_t *pool)
{
mp_chunk_t *chunk;
mp_allocated_t *allocated;
if (PREDICT_LIKELY(pool->used_chunks != NULL)) {
/* Common case: there is some chunk that is neither full nor empty. Use
* that one. (We can't use the full ones, obviously, and we should fill
* up the used ones before we start on any empty ones. */
chunk = pool->used_chunks;
} else if (pool->empty_chunks) {
/* We have no used chunks, but we have an empty chunk that we haven't
* freed yet: use that. (We pull from the front of the list, which should
* get us the most recently emptied chunk.) */
chunk = pool->empty_chunks;
/* Remove the chunk from the empty list. */
pool->empty_chunks = chunk->next;
if (chunk->next)
chunk->next->prev = NULL;
/* Put the chunk on the 'used' list*/
add_newly_used_chunk_to_used_list(pool, chunk);
ASSERT(!chunk->prev);
--pool->n_empty_chunks;
if (pool->n_empty_chunks < pool->min_empty_chunks)
pool->min_empty_chunks = pool->n_empty_chunks;
} else {
/* We have no used or empty chunks: allocate a new chunk. */
chunk = mp_chunk_new(pool);
CHECK_ALLOC(chunk);
/* Add the new chunk to the used list. */
add_newly_used_chunk_to_used_list(pool, chunk);
}
ASSERT(chunk->n_allocated < chunk->capacity);
if (chunk->first_free) {
/* If there's anything on the chunk's freelist, unlink it and use it. */
allocated = chunk->first_free;
chunk->first_free = allocated->u.next_free;
allocated->u.next_free = NULL; /* For debugging; not really needed. */
ASSERT(allocated->in_chunk == chunk);
} else {
/* Otherwise, the chunk had better have some free space left on it. */
ASSERT(chunk->next_mem + pool->item_alloc_size <=
chunk->mem + chunk->mem_size);
/* Good, it did. Let's carve off a bit of that free space, and use
* that. */
allocated = (void*)chunk->next_mem;
chunk->next_mem += pool->item_alloc_size;
allocated->in_chunk = chunk;
allocated->u.next_free = NULL; /* For debugging; not really needed. */
}
++chunk->n_allocated;
#ifdef MEMPOOL_STATS
++pool->total_items_allocated;
#endif
if (PREDICT_UNLIKELY(chunk->n_allocated == chunk->capacity)) {
/* This chunk just became full. */
ASSERT(chunk == pool->used_chunks);
ASSERT(chunk->prev == NULL);
/* Take it off the used list. */
pool->used_chunks = chunk->next;
if (chunk->next)
chunk->next->prev = NULL;
/* Put it on the full list. */
chunk->next = pool->full_chunks;
if (chunk->next)
chunk->next->prev = chunk;
pool->full_chunks = chunk;
}
/* And return the memory portion of the mp_allocated_t. */
return A2M(allocated);
}
/** Return an allocated memory item to its memory pool. */
void
mp_pool_release(void *item)
{
mp_allocated_t *allocated = (void*) M2A(item);
mp_chunk_t *chunk = allocated->in_chunk;
ASSERT(chunk);
ASSERT(chunk->magic == MP_CHUNK_MAGIC);
ASSERT(chunk->n_allocated > 0);
allocated->u.next_free = chunk->first_free;
chunk->first_free = allocated;
if (PREDICT_UNLIKELY(chunk->n_allocated == chunk->capacity)) {
/* This chunk was full and is about to be used. */
mp_pool_t *pool = chunk->pool;
/* unlink from the full list */
if (chunk->prev)
chunk->prev->next = chunk->next;
if (chunk->next)
chunk->next->prev = chunk->prev;
if (chunk == pool->full_chunks)
pool->full_chunks = chunk->next;
/* link to the used list. */
chunk->next = pool->used_chunks;
chunk->prev = NULL;
if (chunk->next)
chunk->next->prev = chunk;
pool->used_chunks = chunk;
} else if (PREDICT_UNLIKELY(chunk->n_allocated == 1)) {
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -