⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 cpumask.h

📁 Axis 221 camera embedded programing interface
💻 H
字号:
#ifndef __LINUX_CPUMASK_H#define __LINUX_CPUMASK_H/* * Cpumasks provide a bitmap suitable for representing the * set of CPU's in a system, one bit position per CPU number. * * See detailed comments in the file linux/bitmap.h describing the * data type on which these cpumasks are based. * * For details of cpumask_scnprintf() and cpumask_parse_user(), * see bitmap_scnprintf() and bitmap_parse_user() in lib/bitmap.c. * For details of cpulist_scnprintf() and cpulist_parse(), see * bitmap_scnlistprintf() and bitmap_parselist(), also in bitmap.c. * For details of cpu_remap(), see bitmap_bitremap in lib/bitmap.c * For details of cpus_remap(), see bitmap_remap in lib/bitmap.c. * * The available cpumask operations are: * * void cpu_set(cpu, mask)		turn on bit 'cpu' in mask * void cpu_clear(cpu, mask)		turn off bit 'cpu' in mask * void cpus_setall(mask)		set all bits * void cpus_clear(mask)		clear all bits * int cpu_isset(cpu, mask)		true iff bit 'cpu' set in mask * int cpu_test_and_set(cpu, mask)	test and set bit 'cpu' in mask * * void cpus_and(dst, src1, src2)	dst = src1 & src2  [intersection] * void cpus_or(dst, src1, src2)	dst = src1 | src2  [union] * void cpus_xor(dst, src1, src2)	dst = src1 ^ src2 * void cpus_andnot(dst, src1, src2)	dst = src1 & ~src2 * void cpus_complement(dst, src)	dst = ~src * * int cpus_equal(mask1, mask2)		Does mask1 == mask2? * int cpus_intersects(mask1, mask2)	Do mask1 and mask2 intersect? * int cpus_subset(mask1, mask2)	Is mask1 a subset of mask2? * int cpus_empty(mask)			Is mask empty (no bits sets)? * int cpus_full(mask)			Is mask full (all bits sets)? * int cpus_weight(mask)		Hamming weigh - number of set bits * * void cpus_shift_right(dst, src, n)	Shift right * void cpus_shift_left(dst, src, n)	Shift left * * int first_cpu(mask)			Number lowest set bit, or NR_CPUS * int next_cpu(cpu, mask)		Next cpu past 'cpu', or NR_CPUS * * cpumask_t cpumask_of_cpu(cpu)	Return cpumask with bit 'cpu' set * CPU_MASK_ALL				Initializer - all bits set * CPU_MASK_NONE			Initializer - no bits set * unsigned long *cpus_addr(mask)	Array of unsigned long's in mask * * int cpumask_scnprintf(buf, len, mask) Format cpumask for printing * int cpumask_parse_user(ubuf, ulen, mask)	Parse ascii string as cpumask * int cpulist_scnprintf(buf, len, mask) Format cpumask as list for printing * int cpulist_parse(buf, map)		Parse ascii string as cpulist * int cpu_remap(oldbit, old, new)	newbit = map(old, new)(oldbit) * int cpus_remap(dst, src, old, new)	*dst = map(old, new)(src) * * for_each_cpu_mask(cpu, mask)		for-loop cpu over mask * * int num_online_cpus()		Number of online CPUs * int num_possible_cpus()		Number of all possible CPUs * int num_present_cpus()		Number of present CPUs * * int cpu_online(cpu)			Is some cpu online? * int cpu_possible(cpu)		Is some cpu possible? * int cpu_present(cpu)			Is some cpu present (can schedule)? * * int any_online_cpu(mask)		First online cpu in mask * * for_each_possible_cpu(cpu)		for-loop cpu over cpu_possible_map * for_each_online_cpu(cpu)		for-loop cpu over cpu_online_map * for_each_present_cpu(cpu)		for-loop cpu over cpu_present_map * * Subtlety: * 1) The 'type-checked' form of cpu_isset() causes gcc (3.3.2, anyway) *    to generate slightly worse code.  Note for example the additional *    40 lines of assembly code compiling the "for each possible cpu" *    loops buried in the disk_stat_read() macros calls when compiling *    drivers/block/genhd.c (arch i386, CONFIG_SMP=y).  So use a simple *    one-line #define for cpu_isset(), instead of wrapping an inline *    inside a macro, the way we do the other calls. */#include <linux/kernel.h>#include <linux/threads.h>#include <linux/bitmap.h>typedef struct { DECLARE_BITMAP(bits, NR_CPUS); } cpumask_t;extern cpumask_t _unused_cpumask_arg_;#define cpu_set(cpu, dst) __cpu_set((cpu), &(dst))static inline void __cpu_set(int cpu, volatile cpumask_t *dstp){	set_bit(cpu, dstp->bits);}#define cpu_clear(cpu, dst) __cpu_clear((cpu), &(dst))static inline void __cpu_clear(int cpu, volatile cpumask_t *dstp){	clear_bit(cpu, dstp->bits);}#define cpus_setall(dst) __cpus_setall(&(dst), NR_CPUS)static inline void __cpus_setall(cpumask_t *dstp, int nbits){	bitmap_fill(dstp->bits, nbits);}#define cpus_clear(dst) __cpus_clear(&(dst), NR_CPUS)static inline void __cpus_clear(cpumask_t *dstp, int nbits){	bitmap_zero(dstp->bits, nbits);}/* No static inline type checking - see Subtlety (1) above. */#define cpu_isset(cpu, cpumask) test_bit((cpu), (cpumask).bits)#define cpu_test_and_set(cpu, cpumask) __cpu_test_and_set((cpu), &(cpumask))static inline int __cpu_test_and_set(int cpu, cpumask_t *addr){	return test_and_set_bit(cpu, addr->bits);}#define cpus_and(dst, src1, src2) __cpus_and(&(dst), &(src1), &(src2), NR_CPUS)static inline void __cpus_and(cpumask_t *dstp, const cpumask_t *src1p,					const cpumask_t *src2p, int nbits){	bitmap_and(dstp->bits, src1p->bits, src2p->bits, nbits);}#define cpus_or(dst, src1, src2) __cpus_or(&(dst), &(src1), &(src2), NR_CPUS)static inline void __cpus_or(cpumask_t *dstp, const cpumask_t *src1p,					const cpumask_t *src2p, int nbits){	bitmap_or(dstp->bits, src1p->bits, src2p->bits, nbits);}#define cpus_xor(dst, src1, src2) __cpus_xor(&(dst), &(src1), &(src2), NR_CPUS)static inline void __cpus_xor(cpumask_t *dstp, const cpumask_t *src1p,					const cpumask_t *src2p, int nbits){	bitmap_xor(dstp->bits, src1p->bits, src2p->bits, nbits);}#define cpus_andnot(dst, src1, src2) \				__cpus_andnot(&(dst), &(src1), &(src2), NR_CPUS)static inline void __cpus_andnot(cpumask_t *dstp, const cpumask_t *src1p,					const cpumask_t *src2p, int nbits){	bitmap_andnot(dstp->bits, src1p->bits, src2p->bits, nbits);}#define cpus_complement(dst, src) __cpus_complement(&(dst), &(src), NR_CPUS)static inline void __cpus_complement(cpumask_t *dstp,					const cpumask_t *srcp, int nbits){	bitmap_complement(dstp->bits, srcp->bits, nbits);}#define cpus_equal(src1, src2) __cpus_equal(&(src1), &(src2), NR_CPUS)static inline int __cpus_equal(const cpumask_t *src1p,					const cpumask_t *src2p, int nbits){	return bitmap_equal(src1p->bits, src2p->bits, nbits);}#define cpus_intersects(src1, src2) __cpus_intersects(&(src1), &(src2), NR_CPUS)static inline int __cpus_intersects(const cpumask_t *src1p,					const cpumask_t *src2p, int nbits){	return bitmap_intersects(src1p->bits, src2p->bits, nbits);}#define cpus_subset(src1, src2) __cpus_subset(&(src1), &(src2), NR_CPUS)static inline int __cpus_subset(const cpumask_t *src1p,					const cpumask_t *src2p, int nbits){	return bitmap_subset(src1p->bits, src2p->bits, nbits);}#define cpus_empty(src) __cpus_empty(&(src), NR_CPUS)static inline int __cpus_empty(const cpumask_t *srcp, int nbits){	return bitmap_empty(srcp->bits, nbits);}#define cpus_full(cpumask) __cpus_full(&(cpumask), NR_CPUS)static inline int __cpus_full(const cpumask_t *srcp, int nbits){	return bitmap_full(srcp->bits, nbits);}#define cpus_weight(cpumask) __cpus_weight(&(cpumask), NR_CPUS)static inline int __cpus_weight(const cpumask_t *srcp, int nbits){	return bitmap_weight(srcp->bits, nbits);}#define cpus_shift_right(dst, src, n) \			__cpus_shift_right(&(dst), &(src), (n), NR_CPUS)static inline void __cpus_shift_right(cpumask_t *dstp,					const cpumask_t *srcp, int n, int nbits){	bitmap_shift_right(dstp->bits, srcp->bits, n, nbits);}#define cpus_shift_left(dst, src, n) \			__cpus_shift_left(&(dst), &(src), (n), NR_CPUS)static inline void __cpus_shift_left(cpumask_t *dstp,					const cpumask_t *srcp, int n, int nbits){	bitmap_shift_left(dstp->bits, srcp->bits, n, nbits);}#ifdef CONFIG_SMPint __first_cpu(const cpumask_t *srcp);#define first_cpu(src) __first_cpu(&(src))int __next_cpu(int n, const cpumask_t *srcp);#define next_cpu(n, src) __next_cpu((n), &(src))#else#define first_cpu(src)		0#define next_cpu(n, src)	1#endif#define cpumask_of_cpu(cpu)						\({									\	typeof(_unused_cpumask_arg_) m;					\	if (sizeof(m) == sizeof(unsigned long)) {			\		m.bits[0] = 1UL<<(cpu);					\	} else {							\		cpus_clear(m);						\		cpu_set((cpu), m);					\	}								\	m;								\})#define CPU_MASK_LAST_WORD BITMAP_LAST_WORD_MASK(NR_CPUS)#if NR_CPUS <= BITS_PER_LONG#define CPU_MASK_ALL							\(cpumask_t) { {								\	[BITS_TO_LONGS(NR_CPUS)-1] = CPU_MASK_LAST_WORD			\} }#else#define CPU_MASK_ALL							\(cpumask_t) { {								\	[0 ... BITS_TO_LONGS(NR_CPUS)-2] = ~0UL,			\	[BITS_TO_LONGS(NR_CPUS)-1] = CPU_MASK_LAST_WORD			\} }#endif#define CPU_MASK_NONE							\(cpumask_t) { {								\	[0 ... BITS_TO_LONGS(NR_CPUS)-1] =  0UL				\} }#define CPU_MASK_CPU0							\(cpumask_t) { {								\	[0] =  1UL							\} }#define cpus_addr(src) ((src).bits)#define cpumask_scnprintf(buf, len, src) \			__cpumask_scnprintf((buf), (len), &(src), NR_CPUS)static inline int __cpumask_scnprintf(char *buf, int len,					const cpumask_t *srcp, int nbits){	return bitmap_scnprintf(buf, len, srcp->bits, nbits);}#define cpumask_parse_user(ubuf, ulen, dst) \			__cpumask_parse_user((ubuf), (ulen), &(dst), NR_CPUS)static inline int __cpumask_parse_user(const char __user *buf, int len,					cpumask_t *dstp, int nbits){	return bitmap_parse_user(buf, len, dstp->bits, nbits);}#define cpulist_scnprintf(buf, len, src) \			__cpulist_scnprintf((buf), (len), &(src), NR_CPUS)static inline int __cpulist_scnprintf(char *buf, int len,					const cpumask_t *srcp, int nbits){	return bitmap_scnlistprintf(buf, len, srcp->bits, nbits);}#define cpulist_parse(buf, dst) __cpulist_parse((buf), &(dst), NR_CPUS)static inline int __cpulist_parse(const char *buf, cpumask_t *dstp, int nbits){	return bitmap_parselist(buf, dstp->bits, nbits);}#define cpu_remap(oldbit, old, new) \		__cpu_remap((oldbit), &(old), &(new), NR_CPUS)static inline int __cpu_remap(int oldbit,		const cpumask_t *oldp, const cpumask_t *newp, int nbits){	return bitmap_bitremap(oldbit, oldp->bits, newp->bits, nbits);}#define cpus_remap(dst, src, old, new) \		__cpus_remap(&(dst), &(src), &(old), &(new), NR_CPUS)static inline void __cpus_remap(cpumask_t *dstp, const cpumask_t *srcp,		const cpumask_t *oldp, const cpumask_t *newp, int nbits){	bitmap_remap(dstp->bits, srcp->bits, oldp->bits, newp->bits, nbits);}#if NR_CPUS > 1#define for_each_cpu_mask(cpu, mask)		\	for ((cpu) = first_cpu(mask);		\		(cpu) < NR_CPUS;		\		(cpu) = next_cpu((cpu), (mask)))#else /* NR_CPUS == 1 */#define for_each_cpu_mask(cpu, mask)		\	for ((cpu) = 0; (cpu) < 1; (cpu)++, (void)mask)#endif /* NR_CPUS *//* * The following particular system cpumasks and operations manage * possible, present and online cpus.  Each of them is a fixed size * bitmap of size NR_CPUS. * *  #ifdef CONFIG_HOTPLUG_CPU *     cpu_possible_map - has bit 'cpu' set iff cpu is populatable *     cpu_present_map  - has bit 'cpu' set iff cpu is populated *     cpu_online_map   - has bit 'cpu' set iff cpu available to scheduler *  #else *     cpu_possible_map - has bit 'cpu' set iff cpu is populated *     cpu_present_map  - copy of cpu_possible_map *     cpu_online_map   - has bit 'cpu' set iff cpu available to scheduler *  #endif * *  In either case, NR_CPUS is fixed at compile time, as the static *  size of these bitmaps.  The cpu_possible_map is fixed at boot *  time, as the set of CPU id's that it is possible might ever *  be plugged in at anytime during the life of that system boot. *  The cpu_present_map is dynamic(*), representing which CPUs *  are currently plugged in.  And cpu_online_map is the dynamic *  subset of cpu_present_map, indicating those CPUs available *  for scheduling. * *  If HOTPLUG is enabled, then cpu_possible_map is forced to have *  all NR_CPUS bits set, otherwise it is just the set of CPUs that *  ACPI reports present at boot. * *  If HOTPLUG is enabled, then cpu_present_map varies dynamically, *  depending on what ACPI reports as currently plugged in, otherwise *  cpu_present_map is just a copy of cpu_possible_map. * *  (*) Well, cpu_present_map is dynamic in the hotplug case.  If not *      hotplug, it's a copy of cpu_possible_map, hence fixed at boot. * * Subtleties: * 1) UP arch's (NR_CPUS == 1, CONFIG_SMP not defined) hardcode *    assumption that their single CPU is online.  The UP *    cpu_{online,possible,present}_maps are placebos.  Changing them *    will have no useful affect on the following num_*_cpus() *    and cpu_*() macros in the UP case.  This ugliness is a UP *    optimization - don't waste any instructions or memory references *    asking if you're online or how many CPUs there are if there is *    only one CPU. * 2) Most SMP arch's #define some of these maps to be some *    other map specific to that arch.  Therefore, the following *    must be #define macros, not inlines.  To see why, examine *    the assembly code produced by the following.  Note that *    set1() writes phys_x_map, but set2() writes x_map: *        int x_map, phys_x_map; *        #define set1(a) x_map = a *        inline void set2(int a) { x_map = a; } *        #define x_map phys_x_map *        main(){ set1(3); set2(5); } */extern cpumask_t cpu_possible_map;extern cpumask_t cpu_online_map;extern cpumask_t cpu_present_map;#if NR_CPUS > 1#define num_online_cpus()	cpus_weight(cpu_online_map)#define num_possible_cpus()	cpus_weight(cpu_possible_map)#define num_present_cpus()	cpus_weight(cpu_present_map)#define cpu_online(cpu)		cpu_isset((cpu), cpu_online_map)#define cpu_possible(cpu)	cpu_isset((cpu), cpu_possible_map)#define cpu_present(cpu)	cpu_isset((cpu), cpu_present_map)#else#define num_online_cpus()	1#define num_possible_cpus()	1#define num_present_cpus()	1#define cpu_online(cpu)		((cpu) == 0)#define cpu_possible(cpu)	((cpu) == 0)#define cpu_present(cpu)	((cpu) == 0)#endif#ifdef CONFIG_SMPint highest_possible_processor_id(void);#define any_online_cpu(mask) __any_online_cpu(&(mask))int __any_online_cpu(const cpumask_t *mask);#else#define highest_possible_processor_id()	0#define any_online_cpu(mask)		0#endif#define for_each_possible_cpu(cpu)  for_each_cpu_mask((cpu), cpu_possible_map)#define for_each_online_cpu(cpu)  for_each_cpu_mask((cpu), cpu_online_map)#define for_each_present_cpu(cpu) for_each_cpu_mask((cpu), cpu_present_map)#endif /* __LINUX_CPUMASK_H */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -