⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 pf_epf_upf_demo.asv

📁 PF,EPF,UPF的对比仿真代码
💻 ASV
📖 第 1 页 / 共 2 页
字号:
% PURPOSE : Demonstrate the differences between the following filters on the same problem:%           %           3) Particle Filter         (PF)%           4) PF with EKF proposal    (PFEKF)%           5) PF with UKF proposal    (PFUKF)% For more details refer to:% AUTHORS  : Nando de Freitas      (jfgf@cs.berkeley.edu)%            Rudolph van der Merwe (rvdmerwe@ece.ogi.edu)% DATE     : 17 August 2000clear all;clc;echo off;path('./ukf',path);% INITIALISATION AND PARAMETERS:% ==============================no_of_runs = 1;            % number of experiments to generate statistical                            % averagesdoPlot = 0;                 % 1 plot online. 0 = only plot at the end.sigma =  1e-5;              % Variance of the Gaussian measurement noise.g1 = 3;                     % Paramater of Gamma transition prior.g2 = 2;                     % Parameter of Gamman transition prior.                            % Thus mean = 3/2 and var = 3/4.T = 50;                     % Number of time steps.% R = 1e-5;                   % EKF's measurement noise variance. % Q = 3/4;                    % EKF's process noise variance.P0 = 3/4;                   % EKF's initial variance of the states.N = 200;                     % Number of particles.resamplingScheme = 1;       % The possible choices are                            % systematic sampling (2),                            % residual (1)                            % and multinomial (3).                             % They're all O(N) algorithms. Q_pfekf = 10*3/4;R_pfekf = 1e-1;Q_pfukf = 2*3/4;R_pfukf = 1e-1;			    alpha = 1;                  % UKF : point scaling parameterbeta  = 0;                  % UKF : scaling parameter for higher order terms of Taylor series expansion kappa = 2;                  % UKF : sigma point selection scaling parameter (best to leave this = 0)%**************************************************************************************% SETUP BUFFERS TO STORE PERFORMANCE RESULTS% ==========================================rmsError_pf       = zeros(1,no_of_runs);rmsError_pfekf    = zeros(1,no_of_runs);rmsError_pfukf    = zeros(1,no_of_runs);time_pf       = zeros(1,no_of_runs);     time_pfekf    = zeros(1,no_of_runs);time_pfukf    = zeros(1,no_of_runs);%**************************************************************************************% MAIN LOOPfor j=1:no_of_runs,  rand('state',sum(100*clock));   % Shuffle the pack!  randn('state',sum(100*clock));   % Shuffle the pack!  % GENERATE THE DATA:% ==================x = zeros(T,1);y = zeros(T,1);processNoise = zeros(T,1);measureNoise = zeros(T,1);x(1) = 1;                         % Initial state.for t=2:T  processNoise(t) = gengamma(g1,g2);    measureNoise(t) = sqrt(sigma)*randn(1,1);      x(t) = feval('ffun',x(t-1),t) +processNoise(t);     % Gamma transition prior.    y(t) = feval('hfun',x(t),t) + measureNoise(t);      % Gaussian likelihood.end;  % PLOT THE GENERATED DATA:% ========================figure(1)clf;plot(1:T,x,'r',1:T,y,'b');ylabel('Data','fontsize',15);xlabel('Time','fontsize',15);legend('States (x)','Observations(y)');%%%%%%%%%%%%%%%  PERFORM EKF and UKF ESTIMATION  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  ==============================  %%%%%%%%%%%%%%%%%%%%%% INITIALISATION:% ==============mu_ekf = ones(T,1);     % EKF estimate of the mean of the states.P_ekf = P0*ones(T,1);   % EKF estimate of the variance of the states.mu_ukf = mu_ekf;        % UKF estimate of the mean of the states.P_ukf = P_ekf;          % UKF estimate of the variance of the states.yPred = ones(T,1);      % One-step-ahead predicted values of y.mu_ekfPred = ones(T,1); % EKF O-s-a estimate of the mean of the states.PPred = ones(T,1);      % EKF O-s-a estimate of the variance of the states.disp(' ');%%%%%%%%%%%%%%%  PERFORM SEQUENTIAL MONTE CARLO  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  ==============================  %%%%%%%%%%%%%%%%%%%%%% INITIALISATION:% ==============xparticle_pf = ones(T,N);        % These are the particles for the estimate                                 % of x. Note that there's no need to store                                 % them for all t. We're only doing this to                                 % show you all the nice plots at the end.xparticlePred_pf = ones(T,N);    % One-step-ahead predicted values of the states.yPred_pf = ones(T,N);            % One-step-ahead predicted values of y.w = ones(T,N);                   % Importance weights.disp(' '); tic;                             % Initialize timer for benchmarkingfor t=2:T,      fprintf('run = %i / %i :  PF : t = %i / %i  \r',j,no_of_runs,t,T);  fprintf('\n')    % PREDICTION STEP:  % ================   % We use the transition prior as proposal.  for i=1:N,    xparticlePred_pf(t,i) = feval('ffun',xparticle_pf(t-1,i),t) + gengamma(g1,g2);     end;  % EVALUATE IMPORTANCE WEIGHTS:  % ============================  % For our choice of proposal, the importance weights are give by:    for i=1:N,    yPred_pf(t,i) = feval('hfun',xparticlePred_pf(t,i),t);            lik = inv(sqrt(sigma)) * exp(-0.5*inv(sigma)*((y(t)-yPred_pf(t,i))^(2))) ...	  + 1e-99; % Deal with ill-conditioning.    w(t,i) = lik;      end;    w(t,:) = w(t,:)./sum(w(t,:));                % Normalise the weights.    % SELECTION STEP:  % ===============  % Here, we give you the choice to try three different types of  % resampling algorithms. Note that the code for these algorithms  % applies to any problem!  if resamplingScheme == 1    outIndex = residualR(1:N,w(t,:)');        % Residual resampling.  elseif resamplingScheme == 2    outIndex = systematicR(1:N,w(t,:)');      % Systematic resampling.  else      outIndex = multinomialR(1:N,w(t,:)');     % Multinomial resampling.    end;  xparticle_pf(t,:) = xparticlePred_pf(t,outIndex); % Keep particles with                                                    % resampled indices.end;   % End of t loop.time_pf(j) = toc;    % How long did this take?%%%%%%%%%%%%%%%  PERFORM SEQUENTIAL MONTE CARLO  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  ======== EKF proposal ========  %%%%%%%%%%%%%%%%%%%%%% INITIALISATION:% ==============xparticle_pfekf = ones(T,N);        % These are the particles for the estimate                                    % of x. Note that there's no need to store                                    % them for all t. We're only doing this to                                    % show you all the nice plots at the end.Pparticle_pfekf = P0*ones(T,N);     % Particles for the covariance of x.xparticlePred_pfekf = ones(T,N);    % One-step-ahead predicted values of the states.PparticlePred_pfekf = ones(T,N);    % One-step-ahead predicted values of P.yPred_pfekf = ones(T,N);            % One-step-ahead predicted values of y.w = ones(T,N);                      % Importance weights.muPred_pfekf = ones(T,1);           % EKF O-s-a estimate of the mean of the states.PPred_pfekf = ones(T,1);            % EKF O-s-a estimate of the variance of the states.mu_pfekf = ones(T,1);               % EKF estimate of the mean of the states.P_pfekf = P0*ones(T,1);             % EKF estimate of the variance of the states.disp(' ');tic;                                % Initialize timer for benchmarkingfor t=2:T,      fprintf('run = %i / %i :  PF-EKF : t = %i / %i  \r',j,no_of_runs,t,T);  fprintf('\n')    % PREDICTION STEP:  % ================   % We use the EKF as proposal.  for i=1:N,    muPred_pfekf(t) = feval('ffun',xparticle_pfekf(t-1,i),t);    Jx = 0.5;                                 % Jacobian for ffun.    PPred_pfekf(t) = Q_pfekf + Jx*Pparticle_pfekf(t-1,i)*Jx';     yPredTmp = feval('hfun',muPred_pfekf(t),t);    if t<=30,      Jy = 2*0.2*muPred_pfekf(t);                     % Jacobian for hfun.    else      Jy = 0.5;    end;    M = R_pfekf + Jy*PPred_pfekf(t)*Jy';                  % Innovations covariance.    K = PPred_pfekf(t)*Jy'*inv(M);                  % Kalman gain.    mu_pfekf(t,i) = muPred_pfekf(t) + K*(y(t)-yPredTmp); % Mean of proposal.    P_pfekf(t) = PPred_pfekf(t) - K*Jy*PPred_pfekf(t);          % Variance of proposal.    xparticlePred_pfekf(t,i) = mu_pfekf(t,i) + sqrtm(P_pfekf(t))*randn(1,1);    PparticlePred_pfekf(t,i) = P_pfekf(t);  end;  % EVALUATE IMPORTANCE WEIGHTS:  % ============================  % For our choice of proposal, the importance weights are give by:    for i=1:N,    yPred_pfekf(t,i) = feval('hfun',xparticlePred_pfekf(t,i),t);            lik = inv(sqrt(sigma)) * exp(-0.5*inv(sigma)*((y(t)-yPred_pfekf(t,i))^(2)))+1e-99;    prior = ((xparticlePred_pfekf(t,i)-xparticle_pfekf(t-1,i))^(g1-1)) ...		 * exp(-g2*(xparticlePred_pfekf(t,i)-xparticle_pfekf(t-1,i)));    proposal = inv(sqrt(PparticlePred_pfekf(t,i))) * ...	       exp(-0.5*inv(PparticlePred_pfekf(t,i)) *((xparticlePred_pfekf(t,i)-mu_pfekf(t,i))^(2)));    w(t,i) = lik*prior/proposal;      

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -