⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 lab305-ad.c

📁 TI28335DSPAD转换程序
💻 C
字号:

#include "DSP2833x_Device.h"     // DSP2833x Headerfile Include File
#include "DSP2833x_Examples.h"   // DSP2833x Examples Include File

// Determine when the shift to right justify the data takes place
// Only one of these should be defined as 1.
// The other two should be defined as 0.
#define POST_SHIFT   0  // Shift results after the entire sample table is full
#define INLINE_SHIFT 1  // Shift results as the data is taken from the results regsiter
#define NO_SHIFT     0  // Do not shift the results

// ADC start parameters
#if (CPU_FRQ_150MHZ)     // Default - 150 MHz SYSCLKOUT
  #define ADC_MODCLK 0x3 // HSPCLK = SYSCLKOUT/2*ADC_MODCLK2 = 150/(2*3)   = 25.0 MHz
#endif
#if (CPU_FRQ_100MHZ)
  #define ADC_MODCLK 0x2 // HSPCLK = SYSCLKOUT/2*ADC_MODCLK2 = 100/(2*2)   = 25.0 MHz
#endif
#define ADC_CKPS   0x0   // ADC module clock = HSPCLK/1      = 25.5MHz/(1)   = 25.0 MHz
#define ADC_SHCLK  0x1   // S/H width in ADC module periods                  = 2 ADC cycle
#define AVG        1000  // Average sample limit
#define ZOFFSET    0x00  // Average Zero offset
#define BUF_SIZE   1024  // Sample buffer size

// Global variable for this example
Uint16 SampleTable[BUF_SIZE];
Uint16 SampleTable1[BUF_SIZE];
Uint16 B[BUF_SIZE];
Uint16 AD0[64];

main()
{
   Uint16 i;
   Uint16 j,k;
   Uint16 array_index;
   Uint16 array_index1;

// Step 1. Initialize System Control:
// PLL, WatchDog, enable Peripheral Clocks
// This example function is found in the DSP2833x_SysCtrl.c file.
   InitSysCtrl();

// Specific clock setting for this example:
   EALLOW;
   SysCtrlRegs.HISPCP.all = ADC_MODCLK;	// HSPCLK = SYSCLKOUT/ADC_MODCLK
   EDIS;

// Step 2. Initialize GPIO:
// This example function is found in the DSP2833x_Gpio.c file and
// illustrates how to set the GPIO to it's default state.
// InitGpio();  // Skipped for this example
// Enable the pin GPIO34 as output
   EALLOW;
   GpioCtrlRegs.GPBMUX1.bit.GPIO34 = 0;    // GPIO pin
   GpioCtrlRegs.GPBDIR.bit.GPIO34 = 1;     // Output pin
   EDIS;

// Step 3. Clear all interrupts and initialize PIE vector table:
// Disable CPU interrupts
   DINT;

// Initialize the PIE control registers to their default state.
// The default state is all PIE interrupts disabled and flags
// are cleared.
// This function is found in the DSP2833x_PieCtrl.c file.
   InitPieCtrl();

// Disable CPU interrupts and clear all CPU interrupt flags:
   IER = 0x0000;
   IFR = 0x0000;

// Initialize the PIE vector table with pointers to the shell Interrupt
// Service Routines (ISR).
// This will populate the entire table, even if the interrupt
// is not used in this example.  This is useful for debug purposes.
// The shell ISR routines are found in DSP2833x_DefaultIsr.c.
// This function is found in DSP2833x_PieVect.c.
   InitPieVectTable();

// Step 4. Initialize all the Device Peripherals:
// This function is found in DSP2833x_InitPeripherals.c
// InitPeripherals(); // Not required for this example
   InitAdc();         // For this example, init the ADC

// Specific ADC setup for this example:
   AdcRegs.ADCTRL1.bit.ACQ_PS = ADC_SHCLK;  // Sequential mode: Sample rate   = 1/[(2+ACQ_PS)*ADC clock in ns]
                        //                     = 1/(3*40ns) =8.3MHz (for 150 MHz SYSCLKOUT)
					    //                     = 1/(3*80ns) =4.17MHz (for 100 MHz SYSCLKOUT)
					    // If Simultaneous mode enabled: Sample rate = 1/[(3+ACQ_PS)*ADC clock in ns]
   AdcRegs.ADCTRL3.bit.ADCCLKPS = ADC_CKPS;
   AdcRegs.ADCTRL1.bit.SEQ_CASC = 1;        // 1  Cascaded mode
   AdcRegs.ADCCHSELSEQ1.bit.CONV00 = 0x0;
   AdcRegs.ADCCHSELSEQ1.bit.CONV01 = 0x1;
   AdcRegs.ADCTRL1.bit.CONT_RUN = 1;       // Setup continuous run

   AdcRegs.ADCTRL1.bit.SEQ_OVRD = 1;       // Enable Sequencer override feature
   AdcRegs.ADCCHSELSEQ1.all = 0x10;         // Initialize all ADC channel selects to A0
   AdcRegs.ADCCHSELSEQ2.all = 0x0;
   AdcRegs.ADCCHSELSEQ3.all = 0x0;
   AdcRegs.ADCCHSELSEQ4.all = 0x0;
   AdcRegs.ADCMAXCONV.bit.MAX_CONV1 = 0x1;  // convert and store in 8 results registers


// Step 5. User specific code, enable interrupts:


// Clear SampleTable
   for (i=0; i<BUF_SIZE; i++)
   {
     SampleTable[i] = 0;
	 SampleTable1[i] = 0;
	 B[BUF_SIZE]=0;
   }

   for(i=0;i<64;i++)
    AD0[i]=0;
// Start SEQ1
   AdcRegs.ADCTRL2.all = 0x2000;

   for(;;)
   {  
     array_index = 0;
     array_index1 = 0;
     for (i=0; i<(BUF_SIZE); i++)
     {
       // Wait for int1
       while (AdcRegs.ADCST.bit.INT_SEQ1== 0){}
       GpioDataRegs.GPBSET.bit.GPIO34 = 1;  // Set GPIO34 for monitoring  -optional

       AdcRegs.ADCST.bit.INT_SEQ1_CLR = 1;

       SampleTable[array_index++]= ( (AdcRegs.ADCRESULT0)>>4);
       SampleTable1[array_index1++]= ( (AdcRegs.ADCRESULT1)>>4);
	   for(j=0;j<100;j++)
	    k++;
	}

    for (i=0; i<BUF_SIZE; i++)
    {
      SampleTable[i] = ((SampleTable[i]) >>4);
	  SampleTable1[i] = ((SampleTable1[i]) >>4);
	  B[i]=i;
    }


    GpioDataRegs.GPBCLEAR.bit.GPIO34 = 1;  // Break point
  }
}

//===========================================================================
// No more.
//===========================================================================


⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -