📄 d2_cst.m
字号:
function [B,E,K,M] = D2_CST (x1, y1, x2, y2, x3, y3, Em, h, miu)
% returns a 2D linear constant strain triangle (CST) element K & M matrix
% in global coordinates
% INPUT:
% x1, y1 - coordinates of joint 1 of the triangle element
% x2, y2 - coordinates of joint 2 of the triangle element
% x3, y3 - coordinates of joint 3 of the triangle element
% Em - elastic modulus for isotropic material
% h - thickness
% miu - Poisson's ratio
% ---------------------------------------------------------------------------
A = (0.5 * det([1 1 1; x1 x2 x3; y1 y2 y3])); % triangle area
% E - elastic modulus matrix for plain stress:
% [E11 E12 E13; E12 E22 E23; E13 E23 E33]
E = Em/(1-miu^2).*[ 1 miu 0; miu 1 0; 0 0 (1-miu)/2 ];
% B - differentiated shape functions matrix
B = [ (y2-y3) 0 (y3-y1) 0 (y1-y2) 0;
0 (x3-x2) 0 (x1-x3) 0 (x2-x1);
(x3-x2) (y2-y3) (x1-x3) (y3-y1) (x2-x1) (y1-y2) ];
B = 1/(2*A).*B;
K = A*h.*B'*E*B ;
M = zeros(6,6); % memory allocation
% Gauss integration points 'xi'
%Mxi = [ 1/2 1/2 0/6; 0/6 1/2 1/2; 1/2 0/6 1/2 ];
%for i=1:3
% xi1=Mxi(i,1); xi2=Mxi(i,2); xi3=Mxi(i,3);
% N = [diag(ones(1,6).*xi1) diag(ones(1,6).*xi2) diag(ones(1,6).*xi3)];
% M = M + 1/3*(N*N'); % Gauss integration
%end;
M = 1/3*h*A*diag([1 1 1 1 1 1]); % equal mass for all nodes
% displacement vector: [x1 y1 x2 y2 x3 y3]
% 3 o
% . .
% . .
% . .
% o........o
% 1 2
% ------------------end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -