⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 m25p80.c

📁 飞思卡尔芯片imx27下的MTD模块的驱动源码
💻 C
字号:
/* * MTD SPI driver for ST M25Pxx flash chips * * Author: Mike Lavender, mike@steroidmicros.com * * Copyright (c) 2005, Intec Automation Inc. * * Some parts are based on lart.c by Abraham Van Der Merwe * * Cleaned up and generalized based on mtd_dataflash.c * * This code is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. * */#include <linux/init.h>#include <linux/module.h>#include <linux/device.h>#include <linux/interrupt.h>#include <linux/interrupt.h>#include <linux/mtd/mtd.h>#include <linux/mtd/partitions.h>#include <linux/spi/spi.h>#include <linux/spi/flash.h>#include <asm/semaphore.h>/* NOTE: AT 25F and SST 25LF series are very similar, * but commands for sector erase and chip id differ... */#define FLASH_PAGESIZE		256/* Flash opcodes. */#define	OPCODE_WREN		6	/* Write enable */#define	OPCODE_RDSR		5	/* Read status register */#define	OPCODE_READ		3	/* Read data bytes */#define	OPCODE_PP		2	/* Page program */#define	OPCODE_SE		0xd8	/* Sector erase */#define	OPCODE_RES		0xab	/* Read Electronic Signature */#define	OPCODE_RDID		0x9f	/* Read JEDEC ID *//* Status Register bits. */#define	SR_WIP			1	/* Write in progress */#define	SR_WEL			2	/* Write enable latch */#define	SR_BP0			4	/* Block protect 0 */#define	SR_BP1			8	/* Block protect 1 */#define	SR_BP2			0x10	/* Block protect 2 */#define	SR_SRWD			0x80	/* SR write protect *//* Define max times to check status register before we give up. */#define	MAX_READY_WAIT_COUNT	100000#ifdef CONFIG_MTD_PARTITIONS#define	mtd_has_partitions()	(1)#else#define	mtd_has_partitions()	(0)#endif/****************************************************************************/struct m25p {	struct spi_device	*spi;	struct semaphore	lock;	struct mtd_info		mtd;	unsigned		partitioned;	u8			command[4];};static inline struct m25p *mtd_to_m25p(struct mtd_info *mtd){	return container_of(mtd, struct m25p, mtd);}/****************************************************************************//* * Internal helper functions *//* * Read the status register, returning its value in the location * Return the status register value. * Returns negative if error occurred. */static int read_sr(struct m25p *flash){	ssize_t retval;	u8 code = OPCODE_RDSR;	u8 val;	retval = spi_write_then_read(flash->spi, &code, 1, &val, 1);	if (retval < 0) {		dev_err(&flash->spi->dev, "error %d reading SR\n",				(int) retval);		return retval;	}	return val;}/* * Set write enable latch with Write Enable command. * Returns negative if error occurred. */static inline int write_enable(struct m25p *flash){	u8	code = OPCODE_WREN;	return spi_write_then_read(flash->spi, &code, 1, NULL, 0);}/* * Service routine to read status register until ready, or timeout occurs. * Returns non-zero if error. */static int wait_till_ready(struct m25p *flash){	int count;	int sr;	/* one chip guarantees max 5 msec wait here after page writes,	 * but potentially three seconds (!) after page erase.	 */	for (count = 0; count < MAX_READY_WAIT_COUNT; count++) {		if ((sr = read_sr(flash)) < 0)			break;		else if (!(sr & SR_WIP))			return 0;		/* REVISIT sometimes sleeping would be best */	}	return 1;}/* * Erase one sector of flash memory at offset ``offset'' which is any * address within the sector which should be erased. * * Returns 0 if successful, non-zero otherwise. */static int erase_sector(struct m25p *flash, u32 offset){	DEBUG(MTD_DEBUG_LEVEL3, "%s: %s at 0x%08x\n", flash->spi->dev.bus_id,			__FUNCTION__, offset);	/* Wait until finished previous write command. */	if (wait_till_ready(flash))		return 1;	/* Send write enable, then erase commands. */	write_enable(flash);	/* Set up command buffer. */	flash->command[0] = OPCODE_SE;	flash->command[1] = offset >> 16;	flash->command[2] = offset >> 8;	flash->command[3] = offset;	spi_write(flash->spi, flash->command, sizeof(flash->command));	return 0;}/****************************************************************************//* * MTD implementation *//* * Erase an address range on the flash chip.  The address range may extend * one or more erase sectors.  Return an error is there is a problem erasing. */static int m25p80_erase(struct mtd_info *mtd, struct erase_info *instr){	struct m25p *flash = mtd_to_m25p(mtd);	u32 addr,len;	DEBUG(MTD_DEBUG_LEVEL2, "%s: %s %s 0x%08x, len %d\n",			flash->spi->dev.bus_id, __FUNCTION__, "at",			(u32)instr->addr, instr->len);	/* sanity checks */	if (instr->addr + instr->len > flash->mtd.size)		return -EINVAL;	if ((instr->addr % mtd->erasesize) != 0			|| (instr->len % mtd->erasesize) != 0) {		return -EINVAL;	}	addr = instr->addr;	len = instr->len;  	down(&flash->lock);	/* now erase those sectors */	while (len) {		if (erase_sector(flash, addr)) {			instr->state = MTD_ERASE_FAILED;			up(&flash->lock);			return -EIO;		}		addr += mtd->erasesize;		len -= mtd->erasesize;	}  	up(&flash->lock);	instr->state = MTD_ERASE_DONE;	mtd_erase_callback(instr);	return 0;}/* * Read an address range from the flash chip.  The address range * may be any size provided it is within the physical boundaries. */static int m25p80_read(struct mtd_info *mtd, loff_t from, size_t len,	size_t *retlen, u_char *buf){	struct m25p *flash = mtd_to_m25p(mtd);	struct spi_transfer t[2];	struct spi_message m;	DEBUG(MTD_DEBUG_LEVEL2, "%s: %s %s 0x%08x, len %zd\n",			flash->spi->dev.bus_id, __FUNCTION__, "from",			(u32)from, len);	/* sanity checks */	if (!len)		return 0;	if (from + len > flash->mtd.size)		return -EINVAL;	spi_message_init(&m);	memset(t, 0, (sizeof t));	t[0].tx_buf = flash->command;	t[0].len = sizeof(flash->command);	spi_message_add_tail(&t[0], &m);	t[1].rx_buf = buf;	t[1].len = len;	spi_message_add_tail(&t[1], &m);	/* Byte count starts at zero. */	if (retlen)		*retlen = 0;	down(&flash->lock);	/* Wait till previous write/erase is done. */	if (wait_till_ready(flash)) {		/* REVISIT status return?? */		up(&flash->lock);		return 1;	}	/* NOTE:  OPCODE_FAST_READ (if available) is faster... */	/* Set up the write data buffer. */	flash->command[0] = OPCODE_READ;	flash->command[1] = from >> 16;	flash->command[2] = from >> 8;	flash->command[3] = from;	spi_sync(flash->spi, &m);	*retlen = m.actual_length - sizeof(flash->command);  	up(&flash->lock);	return 0;}/* * Write an address range to the flash chip.  Data must be written in * FLASH_PAGESIZE chunks.  The address range may be any size provided * it is within the physical boundaries. */static int m25p80_write(struct mtd_info *mtd, loff_t to, size_t len,	size_t *retlen, const u_char *buf){	struct m25p *flash = mtd_to_m25p(mtd);	u32 page_offset, page_size;	struct spi_transfer t[2];	struct spi_message m;	DEBUG(MTD_DEBUG_LEVEL2, "%s: %s %s 0x%08x, len %zd\n",			flash->spi->dev.bus_id, __FUNCTION__, "to",			(u32)to, len);	if (retlen)		*retlen = 0;	/* sanity checks */	if (!len)		return(0);	if (to + len > flash->mtd.size)		return -EINVAL;	spi_message_init(&m);	memset(t, 0, (sizeof t));	t[0].tx_buf = flash->command;	t[0].len = sizeof(flash->command);	spi_message_add_tail(&t[0], &m);	t[1].tx_buf = buf;	spi_message_add_tail(&t[1], &m);  	down(&flash->lock);	/* Wait until finished previous write command. */	if (wait_till_ready(flash))		return 1;	write_enable(flash);	/* Set up the opcode in the write buffer. */	flash->command[0] = OPCODE_PP;	flash->command[1] = to >> 16;	flash->command[2] = to >> 8;	flash->command[3] = to;	/* what page do we start with? */	page_offset = to % FLASH_PAGESIZE;	/* do all the bytes fit onto one page? */	if (page_offset + len <= FLASH_PAGESIZE) {		t[1].len = len;		spi_sync(flash->spi, &m);		*retlen = m.actual_length - sizeof(flash->command);	} else {		u32 i;		/* the size of data remaining on the first page */		page_size = FLASH_PAGESIZE - page_offset;		t[1].len = page_size;		spi_sync(flash->spi, &m);		*retlen = m.actual_length - sizeof(flash->command);		/* write everything in PAGESIZE chunks */		for (i = page_size; i < len; i += page_size) {			page_size = len - i;			if (page_size > FLASH_PAGESIZE)				page_size = FLASH_PAGESIZE;			/* write the next page to flash */			flash->command[1] = (to + i) >> 16;			flash->command[2] = (to + i) >> 8;			flash->command[3] = (to + i);			t[1].tx_buf = buf + i;			t[1].len = page_size;			wait_till_ready(flash);			write_enable(flash);			spi_sync(flash->spi, &m);			if (retlen)				*retlen += m.actual_length					- sizeof(flash->command);	        } 	}	up(&flash->lock);	return 0;}/****************************************************************************//* * SPI device driver setup and teardown */struct flash_info {	char		*name;	u8		id;	u16		jedec_id;	unsigned	sector_size;	unsigned	n_sectors;};static struct flash_info __devinitdata m25p_data [] = {	/* REVISIT: fill in JEDEC ids, for parts that have them */	{ "m25p05", 0x05, 0x2010, 32 * 1024, 2 },	{ "m25p10", 0x10, 0x2011, 32 * 1024, 4 },	{ "m25p20", 0x11, 0x2012, 64 * 1024, 4 },	{ "m25p40", 0x12, 0x2013, 64 * 1024, 8 },	{ "m25p80", 0x13, 0x0000, 64 * 1024, 16 },	{ "m25p16", 0x14, 0x2015, 64 * 1024, 32 },	{ "m25p32", 0x15, 0x2016, 64 * 1024, 64 },	{ "m25p64", 0x16, 0x2017, 64 * 1024, 128 },};/* * board specific setup should have ensured the SPI clock used here * matches what the READ command supports, at least until this driver * understands FAST_READ (for clocks over 25 MHz). */static int __devinit m25p_probe(struct spi_device *spi){	struct flash_platform_data	*data;	struct m25p			*flash;	struct flash_info		*info;	unsigned			i;	/* Platform data helps sort out which chip type we have, as	 * well as how this board partitions it.	 */	data = spi->dev.platform_data;	if (!data || !data->type) {		/* FIXME some chips can identify themselves with RES		 * or JEDEC get-id commands.  Try them ...		 */		DEBUG(MTD_DEBUG_LEVEL1, "%s: no chip id\n",				flash->spi->dev.bus_id);		return -ENODEV;	}	for (i = 0, info = m25p_data; i < ARRAY_SIZE(m25p_data); i++, info++) {		if (strcmp(data->type, info->name) == 0)			break;	}	if (i == ARRAY_SIZE(m25p_data)) {		DEBUG(MTD_DEBUG_LEVEL1, "%s: unrecognized id %s\n",				flash->spi->dev.bus_id, data->type);		return -ENODEV;	}	flash = kzalloc(sizeof *flash, SLAB_KERNEL);	if (!flash)		return -ENOMEM;	flash->spi = spi;	init_MUTEX(&flash->lock);	dev_set_drvdata(&spi->dev, flash);	if (data->name)		flash->mtd.name = data->name;	else		flash->mtd.name = spi->dev.bus_id;	flash->mtd.type = MTD_NORFLASH;	flash->mtd.writesize = 1;	flash->mtd.flags = MTD_CAP_NORFLASH;	flash->mtd.size = info->sector_size * info->n_sectors;	flash->mtd.erasesize = info->sector_size;	flash->mtd.erase = m25p80_erase;	flash->mtd.read = m25p80_read;	flash->mtd.write = m25p80_write;	dev_info(&spi->dev, "%s (%d Kbytes)\n", info->name,			flash->mtd.size / 1024);	DEBUG(MTD_DEBUG_LEVEL2,		"mtd .name = %s, .size = 0x%.8x (%uM) "			".erasesize = 0x%.8x (%uK) .numeraseregions = %d\n",		flash->mtd.name,		flash->mtd.size, flash->mtd.size / (1024*1024),		flash->mtd.erasesize, flash->mtd.erasesize / 1024,		flash->mtd.numeraseregions);	if (flash->mtd.numeraseregions)		for (i = 0; i < flash->mtd.numeraseregions; i++)			DEBUG(MTD_DEBUG_LEVEL2,				"mtd.eraseregions[%d] = { .offset = 0x%.8x, "				".erasesize = 0x%.8x (%uK), "				".numblocks = %d }\n",				i, flash->mtd.eraseregions[i].offset,				flash->mtd.eraseregions[i].erasesize,				flash->mtd.eraseregions[i].erasesize / 1024,				flash->mtd.eraseregions[i].numblocks);	/* partitions should match sector boundaries; and it may be good to	 * use readonly partitions for writeprotected sectors (BP2..BP0).	 */	if (mtd_has_partitions()) {		struct mtd_partition	*parts = NULL;		int			nr_parts = 0;#ifdef CONFIG_MTD_CMDLINE_PARTS		static const char *part_probes[] = { "cmdlinepart", NULL, };		nr_parts = parse_mtd_partitions(&flash->mtd,				part_probes, &parts, 0);#endif		if (nr_parts <= 0 && data && data->parts) {			parts = data->parts;			nr_parts = data->nr_parts;		}		if (nr_parts > 0) {			for (i = 0; i < data->nr_parts; i++) {				DEBUG(MTD_DEBUG_LEVEL2, "partitions[%d] = "					"{.name = %s, .offset = 0x%.8x, "						".size = 0x%.8x (%uK) }\n",					i, data->parts[i].name,					data->parts[i].offset,					data->parts[i].size,					data->parts[i].size / 1024);			}			flash->partitioned = 1;			return add_mtd_partitions(&flash->mtd, parts, nr_parts);		}	} else if (data->nr_parts)		dev_warn(&spi->dev, "ignoring %d default partitions on %s\n",				data->nr_parts, data->name);	return add_mtd_device(&flash->mtd) == 1 ? -ENODEV : 0;}static int __devexit m25p_remove(struct spi_device *spi){	struct m25p	*flash = dev_get_drvdata(&spi->dev);	int		status;	/* Clean up MTD stuff. */	if (mtd_has_partitions() && flash->partitioned)		status = del_mtd_partitions(&flash->mtd);	else		status = del_mtd_device(&flash->mtd);	if (status == 0)		kfree(flash);	return 0;}static struct spi_driver m25p80_driver = {	.driver = {		.name	= "m25p80",		.bus	= &spi_bus_type,		.owner	= THIS_MODULE,	},	.probe	= m25p_probe,	.remove	= __devexit_p(m25p_remove),};static int m25p80_init(void){	return spi_register_driver(&m25p80_driver);}static void m25p80_exit(void){	spi_unregister_driver(&m25p80_driver);}module_init(m25p80_init);module_exit(m25p80_exit);MODULE_LICENSE("GPL");MODULE_AUTHOR("Mike Lavender");MODULE_DESCRIPTION("MTD SPI driver for ST M25Pxx flash chips");

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -