📄 mtd_dataflash.c
字号:
/* * Atmel AT45xxx DataFlash MTD driver for lightweight SPI framework * * Largely derived from at91_dataflash.c: * Copyright (C) 2003-2005 SAN People (Pty) Ltd * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version * 2 of the License, or (at your option) any later version.*/#include <linux/module.h>#include <linux/init.h>#include <linux/slab.h>#include <linux/delay.h>#include <linux/device.h>#include <linux/spi/spi.h>#include <linux/spi/flash.h>#include <linux/mtd/mtd.h>#include <linux/mtd/partitions.h>/* * DataFlash is a kind of SPI flash. Most AT45 chips have two buffers in * each chip, which may be used for double buffered I/O; but this driver * doesn't (yet) use these for any kind of i/o overlap or prefetching. * * Sometimes DataFlash is packaged in MMC-format cards, although the * MMC stack can't use SPI (yet), or distinguish between MMC and DataFlash * protocols during enumeration. */#define CONFIG_DATAFLASH_WRITE_VERIFY/* reads can bypass the buffers */#define OP_READ_CONTINUOUS 0xE8#define OP_READ_PAGE 0xD2/* group B requests can run even while status reports "busy" */#define OP_READ_STATUS 0xD7 /* group B *//* move data between host and buffer */#define OP_READ_BUFFER1 0xD4 /* group B */#define OP_READ_BUFFER2 0xD6 /* group B */#define OP_WRITE_BUFFER1 0x84 /* group B */#define OP_WRITE_BUFFER2 0x87 /* group B *//* erasing flash */#define OP_ERASE_PAGE 0x81#define OP_ERASE_BLOCK 0x50/* move data between buffer and flash */#define OP_TRANSFER_BUF1 0x53#define OP_TRANSFER_BUF2 0x55#define OP_MREAD_BUFFER1 0xD4#define OP_MREAD_BUFFER2 0xD6#define OP_MWERASE_BUFFER1 0x83#define OP_MWERASE_BUFFER2 0x86#define OP_MWRITE_BUFFER1 0x88 /* sector must be pre-erased */#define OP_MWRITE_BUFFER2 0x89 /* sector must be pre-erased *//* write to buffer, then write-erase to flash */#define OP_PROGRAM_VIA_BUF1 0x82#define OP_PROGRAM_VIA_BUF2 0x85/* compare buffer to flash */#define OP_COMPARE_BUF1 0x60#define OP_COMPARE_BUF2 0x61/* read flash to buffer, then write-erase to flash */#define OP_REWRITE_VIA_BUF1 0x58#define OP_REWRITE_VIA_BUF2 0x59/* newer chips report JEDEC manufacturer and device IDs; chip * serial number and OTP bits; and per-sector writeprotect. */#define OP_READ_ID 0x9F#define OP_READ_SECURITY 0x77#define OP_WRITE_SECURITY 0x9A /* OTP bits */struct dataflash { u8 command[4]; char name[24]; unsigned partitioned:1; unsigned short page_offset; /* offset in flash address */ unsigned int page_size; /* of bytes per page */ struct semaphore lock; struct spi_device *spi; struct mtd_info mtd;};#ifdef CONFIG_MTD_PARTITIONS#define mtd_has_partitions() (1)#else#define mtd_has_partitions() (0)#endif/* ......................................................................... *//* * Return the status of the DataFlash device. */static inline int dataflash_status(struct spi_device *spi){ /* NOTE: at45db321c over 25 MHz wants to write * a dummy byte after the opcode... */ return spi_w8r8(spi, OP_READ_STATUS);}/* * Poll the DataFlash device until it is READY. * This usually takes 5-20 msec or so; more for sector erase. */static int dataflash_waitready(struct spi_device *spi){ int status; for (;;) { status = dataflash_status(spi); if (status < 0) { DEBUG(MTD_DEBUG_LEVEL1, "%s: status %d?\n", spi->dev.bus_id, status); status = 0; } if (status & (1 << 7)) /* RDY/nBSY */ return status; msleep(3); }}/* ......................................................................... *//* * Erase pages of flash. */static int dataflash_erase(struct mtd_info *mtd, struct erase_info *instr){ struct dataflash *priv = (struct dataflash *)mtd->priv; struct spi_device *spi = priv->spi; struct spi_transfer x = { .tx_dma = 0, }; struct spi_message msg; unsigned blocksize = priv->page_size << 3; u8 *command; DEBUG(MTD_DEBUG_LEVEL2, "%s: erase addr=0x%x len 0x%x\n", spi->dev.bus_id, instr->addr, instr->len); /* Sanity checks */ if ((instr->addr + instr->len) > mtd->size || (instr->len % priv->page_size) != 0 || (instr->addr % priv->page_size) != 0) return -EINVAL; spi_message_init(&msg); x.tx_buf = command = priv->command; x.len = 4; spi_message_add_tail(&x, &msg); down(&priv->lock); while (instr->len > 0) { unsigned int pageaddr; int status; int do_block; /* Calculate flash page address; use block erase (for speed) if * we're at a block boundary and need to erase the whole block. */ pageaddr = instr->addr / priv->page_size; do_block = (pageaddr & 0x7) == 0 && instr->len >= blocksize; pageaddr = pageaddr << priv->page_offset; command[0] = do_block ? OP_ERASE_BLOCK : OP_ERASE_PAGE; command[1] = (u8)(pageaddr >> 16); command[2] = (u8)(pageaddr >> 8); command[3] = 0; DEBUG(MTD_DEBUG_LEVEL3, "ERASE %s: (%x) %x %x %x [%i]\n", do_block ? "block" : "page", command[0], command[1], command[2], command[3], pageaddr); status = spi_sync(spi, &msg); (void) dataflash_waitready(spi); if (status < 0) { printk(KERN_ERR "%s: erase %x, err %d\n", spi->dev.bus_id, pageaddr, status); /* REVISIT: can retry instr->retries times; or * giveup and instr->fail_addr = instr->addr; */ continue; } if (do_block) { instr->addr += blocksize; instr->len -= blocksize; } else { instr->addr += priv->page_size; instr->len -= priv->page_size; } } up(&priv->lock); /* Inform MTD subsystem that erase is complete */ instr->state = MTD_ERASE_DONE; mtd_erase_callback(instr); return 0;}/* * Read from the DataFlash device. * from : Start offset in flash device * len : Amount to read * retlen : About of data actually read * buf : Buffer containing the data */static int dataflash_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf){ struct dataflash *priv = (struct dataflash *)mtd->priv; struct spi_transfer x[2] = { { .tx_dma = 0, }, }; struct spi_message msg; unsigned int addr; u8 *command; int status; DEBUG(MTD_DEBUG_LEVEL2, "%s: read 0x%x..0x%x\n", priv->spi->dev.bus_id, (unsigned)from, (unsigned)(from + len)); *retlen = 0; /* Sanity checks */ if (!len) return 0; if (from + len > mtd->size) return -EINVAL; /* Calculate flash page/byte address */ addr = (((unsigned)from / priv->page_size) << priv->page_offset) + ((unsigned)from % priv->page_size); command = priv->command; DEBUG(MTD_DEBUG_LEVEL3, "READ: (%x) %x %x %x\n", command[0], command[1], command[2], command[3]); spi_message_init(&msg); x[0].tx_buf = command; x[0].len = 8; spi_message_add_tail(&x[0], &msg); x[1].rx_buf = buf; x[1].len = len; spi_message_add_tail(&x[1], &msg); down(&priv->lock); /* Continuous read, max clock = f(car) which may be less than * the peak rate available. Some chips support commands with * fewer "don't care" bytes. Both buffers stay unchanged. */ command[0] = OP_READ_CONTINUOUS; command[1] = (u8)(addr >> 16); command[2] = (u8)(addr >> 8); command[3] = (u8)(addr >> 0); /* plus 4 "don't care" bytes */ status = spi_sync(priv->spi, &msg); up(&priv->lock); if (status >= 0) { *retlen = msg.actual_length - 8; status = 0; } else DEBUG(MTD_DEBUG_LEVEL1, "%s: read %x..%x --> %d\n", priv->spi->dev.bus_id, (unsigned)from, (unsigned)(from + len), status); return status;}/* * Write to the DataFlash device. * to : Start offset in flash device * len : Amount to write * retlen : Amount of data actually written * buf : Buffer containing the data */static int dataflash_write(struct mtd_info *mtd, loff_t to, size_t len, size_t * retlen, const u_char * buf){ struct dataflash *priv = (struct dataflash *)mtd->priv; struct spi_device *spi = priv->spi; struct spi_transfer x[2] = { { .tx_dma = 0, }, }; struct spi_message msg; unsigned int pageaddr, addr, offset, writelen; size_t remaining = len; u_char *writebuf = (u_char *) buf; int status = -EINVAL; u8 *command; DEBUG(MTD_DEBUG_LEVEL2, "%s: write 0x%x..0x%x\n",
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -