📄 kasumi.c
字号:
#include <stdio.h>
#include "kasumi.h"
/*-------- globals: The subkey arrays -----------------------------------*/
static u16 KLi1[8], KLi2[8];
static u16 KOi1[8], KOi2[8], KOi3[8];
static u16 KIi1[8], KIi2[8], KIi3[8];
/*---------------------------------------------------------------------
* FI()
* The FI function (fig 3). It includes the S7 and S9 tables.
* Transforms a 16-bit value.
*---------------------------------------------------------------------*/
static u16 FI( u16 in, u16 subkey )
{
u16 nine, seven;
static u16 S7[] = {
54, 50, 62, 56, 22, 34, 94, 96, 38, 6, 63, 93, 2, 18,123, 33,
55,113, 39,114, 21, 67, 65, 12, 47, 73, 46, 27, 25,111,124, 81,
53, 9,121, 79, 52, 60, 58, 48,101,127, 40,120,104, 70, 71, 43,
20,122, 72, 61, 23,109, 13,100, 77, 1, 16, 7, 82, 10,105, 98,
117,116, 76, 11, 89,106, 0,125,118, 99, 86, 69, 30, 57,126, 87,
112, 51, 17, 5, 95, 14, 90, 84, 91, 8, 35,103, 32, 97, 28, 66,
102, 31, 26, 45, 75, 4, 85, 92, 37, 74, 80, 49, 68, 29,115, 44,
64,107,108, 24,110, 83, 36, 78, 42, 19, 15, 41, 88,119, 59, 3};
static u16 S9[] = {
167,239,161,379,391,334, 9,338, 38,226, 48,358,452,385, 90,397,
183,253,147,331,415,340, 51,362,306,500,262, 82,216,159,356,177,
175,241,489, 37,206, 17, 0,333, 44,254,378, 58,143,220, 81,400,
95, 3,315,245, 54,235,218,405,472,264,172,494,371,290,399, 76,
165,197,395,121,257,480,423,212,240, 28,462,176,406,507,288,223,
501,407,249,265, 89,186,221,428,164, 74,440,196,458,421,350,163,
232,158,134,354, 13,250,491,142,191, 69,193,425,152,227,366,135,
344,300,276,242,437,320,113,278, 11,243, 87,317, 36, 93,496, 27,
487,446,482, 41, 68,156,457,131,326,403,339, 20, 39,115,442,124,
475,384,508, 53,112,170,479,151,126,169, 73,268,279,321,168,364,
363,292, 46,499,393,327,324, 24,456,267,157,460,488,426,309,229,
439,506,208,271,349,401,434,236, 16,209,359, 52, 56,120,199,277,
465,416,252,287,246, 6, 83,305,420,345,153,502, 65, 61,244,282,
173,222,418, 67,386,368,261,101,476,291,195,430, 49, 79,166,330,
280,383,373,128,382,408,155,495,367,388,274,107,459,417, 62,454,
132,225,203,316,234, 14,301, 91,503,286,424,211,347,307,140,374,
35,103,125,427, 19,214,453,146,498,314,444,230,256,329,198,285,
50,116, 78,410, 10,205,510,171,231, 45,139,467, 29, 86,505, 32,
72, 26,342,150,313,490,431,238,411,325,149,473, 40,119,174,355,
185,233,389, 71,448,273,372, 55,110,178,322, 12,469,392,369,190,
1,109,375,137,181, 88, 75,308,260,484, 98,272,370,275,412,111,
336,318, 4,504,492,259,304, 77,337,435, 21,357,303,332,483, 18,
47, 85, 25,497,474,289,100,269,296,478,270,106, 31,104,433, 84,
414,486,394, 96, 99,154,511,148,413,361,409,255,162,215,302,201,
266,351,343,144,441,365,108,298,251, 34,182,509,138,210,335,133,
311,352,328,141,396,346,123,319,450,281,429,228,443,481, 92,404,
485,422,248,297, 23,213,130,466, 22,217,283, 70,294,360,419,127,
312,377, 7,468,194, 2,117,295,463,258,224,447,247,187, 80,398,
284,353,105,390,299,471,470,184, 57,200,348, 63,204,188, 33,451,
97, 30,310,219, 94,160,129,493, 64,179,263,102,189,207,114,402,
438,477,387,122,192, 42,381, 5,145,118,180,449,293,323,136,380,
43, 66, 60,455,341,445,202,432, 8,237, 15,376,436,464, 59,461};
/* The sixteen bit input is split into two unequal halves, *
* nine bits and seven bits - as is the subkey */
nine = (u16)(in>>7);
seven=(u16)(in&0X7f);
nine = (u16)(S9[nine] ^ seven);
seven = (u16)(S7[seven] ^ (nine & 0x7F));
seven ^= (subkey>>9);
nine ^= (subkey & 0x1FF);
nine = (u16)(S9[nine] ^ seven);
seven = (u16)(S7[seven] ^ (nine & 0x7F));
in = (u16)((seven<<9) + nine);
return( in );
}
/*---------------------------------------------------------------------
* FO()
* The FO() function.
* Transforms a 32-bit value. Uses <index> to identify the
* appropriate subkeys to use.
*---------------------------------------------------------------------*/
static u32 FO( u32 in, int index )
{
u16 left, right;
/* Split the input into two 16-bit words */
left = (u16)(in>>16);
//右移,直接截取后面的16位
right = (u16) (in&0xffff);
/* Now apply the same basic transformation three times */
left ^= KOi1[index];
left = FI( left, KIi1[index] );
left ^= right;
//对左端进行处理,并赋值给右端
right ^= KOi2[index];
right = FI( right, KIi2[index] );
right ^= left;
//第二次加密完成
left ^= KOi3[index];
left = FI( left, KIi3[index] );
left ^= right;
//第三次加密完成
in = ((u32)right<<16)+left;
return( in );
}
/*---------------------------------------------------------------------
* FL()
* The FL() function.
* Transforms a 32-bit value. Uses <index> to identify the
* appropriate subkeys to use.
*---------------------------------------------------------------------*/
static u32 FL( u32 in, int index )
{
u16 l, r, a, b;
/* split out the left and right halves */
l = (u16)(in>>16);
r = (u16)(in);
/* do the FL() operations */
//index表明是第几轮的
a = (u16) (l & KLi1[index]);
r ^= ROL16(a,1);
b = (u16)(r | KLi2[index]);
l ^= ROL16(b,1);
/* put the two halves back together */
in = ((u32)l<<16) + r;
return( in );
}
/*---------------------------------------------------------------------
* Kasumi()
* the Main algorithm (fig 1). Apply the same pair of operations
* four times. Transforms the 64-bit input.
*---------------------------------------------------------------------*/
void kasumi_encrypt( u16 *data )
{
u32 left, right, temp;
//DWORD *d;
int n;
/* Start by getting the data into two 32-bit words (endian corect) */
//d = (DWORD*)data;
//left = (d[0].b8[0]<<24)+(d[0].b8[1]<<16)+(d[0].b8[2]<<8)+(d[0].b8[3]);
//right = (d[1].b8[0]<<24)+(d[1].b8[1]<<16)+(d[1].b8[2]<<8)+(d[1].b8[3]);
left = ((u32)data[0]<<24) + ((u32)data[1]<<16)+((u32)data[2]<<8)+(u32)data[3];
right = ((u32)data[4]<<24) + ((u32)data[5]<<16)+((u32)data[6]<<8)+(u32)data[7];
n = 0;
do
{
temp = FL( left, n );
temp = FO( temp, n++ );
right ^= temp;
temp = FO( right, n );
temp = FL( temp, n++ );
left ^= temp;
//printf("left=>02x, right=>02x\n", left, right); //debug
} while( n<=7 );
data[0] = (u16)((left>>24) & 0x000000ff);
data[4] = (u16)((right>>24) & 0x000000ff);
data[1] = (u16)((left>>16) & 0x000000ff);
data[5] = (u16)((right>>16) & 0x000000ff);
data[2] = (u16)((left>>8) & 0x000000ff);
data[6] = (u16)((right>>8) & 0x000000ff);
data[3] = (u16)(left & 0x000000ff);
data[7] = (u16)(right & 0x000000ff);
}
void kasumi_decrypt(u16 *data)
{
u32 left,right,temp;
int n;
left = ((u32)data[0]<<24) + ((u32)data[1]<<16)+((u32)data[2]<<8)+(u32)data[3];
right = ((u32)data[4]<<24) + ((u32)data[5]<<16)+((u32)data[6]<<8)+(u32)data[7];
n = 7;
do
{
temp = FO( right, n );
temp = FL( temp, n-- );
left ^= temp;
temp = FL( left, n );
temp = FO( temp, n-- );
right ^= temp;
} while( n >= 0 );
data[0] = (u16)((left>>24) & 0x000000ff);
data[4] = (u16)((right>>24) & 0x000000ff);
data[1] = (u16)((left>>16) & 0x000000ff);
data[5] = (u16)((right>>16) & 0x000000ff);
data[2] = (u16)((left>>8) & 0x000000ff);
data[6] = (u16)((right>>8) & 0x000000ff);
data[3] = (u16)(left & 0x000000ff);
data[7] = (u16)(right & 0x000000ff);
}
/*---------------------------------------------------------------------
* KeySchedule()
* Build the key schedule. Most "key" operations use 16-bit
* subkeys so we build u16-sized arrays that are "endian" correct.
*---------------------------------------------------------------------*/
void kasumi_key_schedule( u16 *k)
{
static u16 C[] =
{
0x0123,0x4567,0x89AB,0xCDEF, 0xFEDC,0xBA98,0x7654,0x3210
};
u16 key[8], Kprime[8];
int n;
for( n=0; n<8; ++n )
{
//key[n] = (u16)((k16[n].b8[0]<<8) + (k16[n].b8[1]));
key[n] = (u16)( (k[2*n]<<8)+k[2*n+1]);
}
/* Now build the K抂] keys */
for( n=0; n<8; ++n )
Kprime[n] = (u16)(key[n] ^ C[n]);
/* Finally construct the various sub keys */
for( n=0; n<8; ++n )
{
KLi1[n] = ROL16(key[n],1);
KLi2[n] = Kprime[(n+2)&0x7];
KOi1[n] = ROL16(key[(n+1)&0x7],5);
KOi2[n] = ROL16(key[(n+5)&0x7],8);
KOi3[n] = ROL16(key[(n+6)&0x7],13);
KIi1[n] = Kprime[(n+4)&0x7];
KIi2[n] = Kprime[(n+3)&0x7];
KIi3[n] = Kprime[(n+7)&0x7];
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -