📄 vtb3_3.m
字号:
function [ap,bp]=vtb3_3(dat,t,n)%VTB3_3 Fourier series approximation to a function.%[a,b]=VTB3_3(dat,t,n) returns Fourier coefficients of a function% The coefficients are numerical approximations of the true% coefficients.% dat is a vector of data representing the function% t is the corresponding time vector% n is the desired number of terms to use in the Fourier series% Intermediary plots show the impact of each successive term % on the total seres if no output arguments are specified.% EXAMPLE: Manually performs the steps of the command vtb3_3(5)% f=[ -1:.04:.96 1:-.04:-.96]'+1;% t=(0:length(f)-1)/length(f)';% plot(t,f)% [a,b]=vtb3_3(f,t,5);% vtb3_3(f,t,5)%% VTB3_3(N) displays the N term Fourier approximation to a % triangular input. The approximation is plotted versus time % normalized by the period of the wave. %% VTB3_3 displays the 5 term Fourier approximation to a % triangular input. The approximation is plotted versus time % normalized by the period of the wave. %% Note that these results are only an approximation, and the quality% depends on the number of points used, and the proper selection of begining% and end points. % Copyright Joseph C. Slater, Dec 1996% Revised 02/29/00 - Now can run with no arguments.% Revised 11/11/98 - Example changed to match default function % (Example 3.3.1)% Revised 12/10/97 - Improved location of legend to avoid covering up data.% Disclaimer on qualityif nargin==0 vtb3_3(5) % If this is a demo mode, we don't want to do anythin after % running vtb3_3(5)else if nargin==1 n=dat; tau1=0:.01:.5; Ftr1=(4*tau1-1); tau2=.51:.01:.99; Ftr2=3-4*tau2; t=[tau1 tau2]'; dat=[Ftr1 Ftr2]'; end if nargin==2 n=100 end if size(dat,1)==1 dat=dat'; end if size(t,1)==1 t=t'; end len=length(dat)/2; plot(dat),grid on fs=(fft(dat))/len; fs(1:10); a0=fs(1); a=[a0; real(fs(2:length(fs/2)))]; b=-imag(fs(2:length(fs/2))); len=len*2; dt=2*pi/len; tp=(0:dt:2*pi-dt)'; datapprox=a(1)/2+zeros(size(dat)); plot(t,dat,t,datapprox) grid on aa=version;ll=length(aa); grid on context=['Contribution of terms n=' num2str(i-1)]; legend('Function','New Approximation') if nargout==0 disp('Press ''enter'' to advance') pause end for ii=2:n+1 % a(ii) % b(ii-1) newdat=a(ii)*cos(tp*(ii-1))+b(ii-1)*sin(tp*(ii-1)); datapprox=datapprox+newdat; if nargout==0 %legend off plot(t,dat,t,datapprox,'o',t,datapprox-newdat,'x',t,newdat) %pause aa=version;ll=length(aa); grid on context=['Contribution of terms n=' num2str(ii-1)]; legend('Function','New Approximation','Old Approximation',context,0) pause end end legend off plot(t,dat,t,datapprox),grid on legend('Function','Approximation') aa=version;ll=length(aa); if nargout~=0 ap=a(1:n+1);bp=b(1:n); endend
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -