⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 nmsearch.h

📁 在linux下面实现的单纯性算法的源代码
💻 H
字号:
/*NMSearch.h *declarations of Nelder Mead Simplex Search *Adam Gurson College of William & Mary 1999 */#ifndef _NMSearch_#define _NMSearch_#include <iostream.h>#include <fstream.h>#include <math.h>#include <stdlib.h>#include "objective.h"#include "vec.h"#include "cmat.h"#include "subscrpt.h"//default definitions: should be defined by user in objective.h, but just in case.../*#ifndef maxCalls#define maxCalls -1 // means program will only terminate based on stopping criteria#endif*/#define stoppingStepLength 10e-8 /*sqrt(fabs(3.0 * (4.0/3.0 - 1.0) - 1.0))*/#ifndef DEBUG#define DEBUG 0#endifclass NMSearch{  public: // constructors and destructors   NMSearch(int dim);   // default constructor   NMSearch(int dim, double Alpha, double Beta,                     double Gamma, double Sigma);   // constructor which allows coefficient initialization   NMSearch(const NMSearch& Original);   // deep copy constructor   ~NMSearch();   // destructor // algorithmic routines   void ExploratoryMoves();   // use Nelder Mead to find function minimum   void ReplaceSimplexPoint(int index, const Vector<double>& newPoint);   // replaces simplex point indexed at index with newPoint   void CalculateFunctionValue(int index);   // finds the f(x) value for the simplex point indexed at index and   // replaces the proper value in simplexValues   void SetAlpha(double newAlpha);   void SetBeta(double newBeta);   void SetGamma(double newGamma);   void SetSigma(double newSigma);   // these functions allow the user to set values of the reflection,   // contraction, expansion, and shrinking coefficients   bool Stop();   // returns true if the stopping criteria have been satisfied   void fcnCall(int n, double *x, double& f, int& flag);   // indirection of function call for purposes of keeping an accurate   // tally of the number of function calls // Simplex-altering functions   void InitRegularTriangularSimplex(const Vector<double> *basePoint,                                     const double edgeLength);   // deletes any existing simplex and replaces it with a regular   // triangular simplex in the following manner:   //   // basePoint points to a point that will be the "origin" of the   //    simplex points (it will be a part of the simplex)   // edgeLength is the length of each edge of the "triangle"   //   // functionCalls is reset to 0 and ALL FUNCTION VALUES ARE CALCULATED.   //   // NOTE: basePoint is assumed to be of proper dimension   void InitFixedLengthRightSimplex(const Vector<double> *basePoint,                                    const double edgeLength);   // deletes any existing simplex and replaces it with a right-angle   // simplex in the following manner:   //   // basePoint points to a point that will be the "origin" of the   //    simplex points (it will be a part of the simplex)   // edgeLength is to be the length of each simplex side extending   //    from the basePoint along each positive coordinate direction.   //   // functionCalls is reset to 0 and ALL FUNCTION VALUES ARE CALCULATED.   //   // NOTE: basePoint is assumed to be of proper dimension   void InitVariableLengthRightSimplex(const Vector<double> *basePoint,                                       const double* edgeLengths);   // deletes any existing simplex and replaces it with a right-angle   // simplex in the following manner:   //   // basePoint points to a point that will be the "origin" of the   //    simplex points (it will be a part of the simplex)   // edgeLengths points to an array of n doubles, where n is the   //    dimension of the given search. x_1 will then be located   //    a distance of edgeLengths[0] away from the basepoint along the   //    the x_1 axis, x_2 is edgeLengths[1] away on the x_2 axis, etc.   //   // functionCalls is reset to 0 and ALL FUNCTION VALUES ARE CALCULATED.   //   // NOTE: basePoint and edgeLengths are assumed to be of proper dimension   void InitGeneralSimplex(const Matrix<double> *plex);   // deletes any existing simplex and replaces it with the one   // pointed to by plex   //   // functionCalls is reset to 0 and ALL FUNCTION VALUES ARE CALCULATED.   //   // NOTE: THIS ASSUMES THAT plex IS OF PROPER DIMENSION   void ReadSimplexFile(istream& fp);   // may also pass cin as input stream if desired   // input the values of each trial point   // NOTE: THIS FUNCTION WILL ONLY ACCEPT n+1 POINTS   //   // functionCalls is reset to 0 and ALL FUNCTION VALUES ARE CALCULATED. // Query functions   int GetFunctionCalls() const;   // number of objective function evaluations   void GetMinPoint(Vector<double>* &minimum) const;   // simplex point which generates the best objective function   // value found thus far   // USER SHOULD PASS JUST A NULL POINTER, WITHOUT PREALLOCATED MEMORY   double GetMinVal() const;   // best objective function value found thus far   void GetCurrentSimplex(Matrix<double>* &plex) const;   // performs a deep copy of the simplex to a Matrix pointer   // points to a newly allocated chunk of memory upon return   // USER SHOULD PASS JUST A NULL POINTER, WITHOUT PREALLOCATED MEMORY   void GetCurrentSimplexValues(double* &simValues) const;   // performs a deep copy of the simplexValues array to a double pointer   // points to a newly allocated chunk of memory upon return   // USER SHOULD PASS JUST A NULL POINTER, WITHOUT PREALLOCATED MEMORY   int GetVarNo() const;   // returns the dimension of the problem   int GetTolHit() const;   // returns toleranceHit   void printSimplex() const;   // prints out the simplex points by row, their corresponding f(x)   // values, and the number of function calls thus far private:   void FindMinMaxIndices();   // sets minIndex to the simplex index of the point which generates   // the lowest value of f(x)   // sets maxIndex to the simplex index of the point which generates   // the highest value of f(x)   int SecondHighestPtIndex();   // returns simplex index of the point which   // generates the second highest value of f(x)   void FindCentroid();   // finds the centroid   void FindReflectionPt();   // finds the reflection point and sets its f(x) value   void FindExpansionPt();   // finds the expansion point and sets its f(x) value   void FindContractionPt();   // finds the contraction point and sets its f(x) value   void ShrinkSimplex();   // this function goes through the simplex and reduces the   // lengths of the edges adjacent to the best vertex   int dimensions;                // the number of dimensions                                  //    (the dimension of the problem)   Matrix<double> *simplex;       // the current simplex   double *simplexValues;         // their corresponding f(x) values   double alpha;                  // reflection coefficient   double beta;                   // contraction coefficient   double gamma;                  // expansion coefficient   double sigma;                  // shrinking coefficient   int minIndex;                  // index of point generating min f(x)   int maxIndex;                  // index of point generating max f(x)   Vector<double> *centroid;      // the current centroid   Vector<double> *reflectionPt;  // the reflection point   double reflectionPtValue;      // the value of f(reflectionPt)   Vector<double> *expansionPt;   // the expansion point   double expansionPtValue;       // the value of f(expansionPt)   Vector<double> *contractionPt; // the contraction point   double contractionPtValue;     // the value of f(contractionPt)   double maxPrimePtValue;        // min(f(maxIndexPoint),reflectionPtValue)   long functionCalls;            // tally of number of function calls   int toleranceHit;              // 1 if stop due to tolerance, 0 if funcCalls   int maxPrimePtId;              // set by FindContractionPt() and used in                                  // ExploratoryMoves() to branch in pos. 3   // the following vectors are simply extra storage space   // that are used by functions that require a vector of   // size = dimensions   Vector<double> *scratch, *scratch2;};#endif

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -