📄 exaktsiso_code.m
字号:
% NelinSys - a program tool for analysis and synthesis of nonlinear control systems
% based on MATLAB/Simulink 5.2
%
% (C) 2002-2005, Martin Ondera (eskimo@pobox.sk) (Martin.Ondera@stuba.sk)
% This program is free software; you can redistribute it and/or
% modify it under the terms of the GNU General Public License
% as published by the Free Software Foundation; either version 2
% of the License, or (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
%
% Please, see the LICENSE.TXT file to read the full license.
% Nacitanie symbolickych matic f(x), g(x) a h(x) %
F = get(findobj(gcf,'Tag','EditF'),'String');
G = get(findobj(gcf,'Tag','EditG'),'String');
H = get(findobj(gcf,'Tag','EditH'),'String');
n = size(sym(F));
n = n(1,1);
% Definicia symbolov pre stavove premenne %
for countr = 1 : n
eval(sprintf('syms x%d', countr));
end
% Zisti si symbolicke premenne, ktore vystupuju vo vyrazoch %
premF = strrep(strrep(findsym(sym(F)),', ',''),',',' ');
premG = strrep(strrep(findsym(sym(G)),', ',''),',',' ');
premH = strrep(strrep(findsym(sym(H)),', ',''),',',' ');
% Premenne x1, x2, ..., xN su korektne, preskoc ich %
for countr = 1 : n
premF = strrep(premF, sprintf('x%d',countr), '');
premG = strrep(premG, sprintf('x%d',countr), '');
premH = strrep(premH, sprintf('x%d',countr), '');
end
% Ak niektory retazec nezostal prazdny, vyhlas chybu %
if ~isempty(premF)
error('Unknown symbol in f(x) expression - cannot continue!');
end
if ~isempty(premG)
error('Unknown symbol in g(x) expression - cannot continue!');
end
if ~isempty(premH)
error('Unknown symbol in h(x) expression - cannot continue!');
end
% Pretypovanie retazcov na symbolicke objekty %
F = eval(F); G = eval(G); H = eval(H);
% Otestovanie spravnosti rozmerov matic F,G,H (podla "n") %
if ~all(size(F) == [n,1])
error('Invalid dimensions of f(x) matrix - cannot continue!');
end
if ~all(size(G) == [n,1])
error('Invalid dimensions of g(x) matrix - cannot continue!');
end
if ~all(size(H) == [1,1])
error('Invalid dimensions of h(x) matrix - cannot continue!');
end
% Definicia symbolov pre vstup sustavy a vstup URO %
syms u v;
% Vytvorenie vektora x ako x = [x1, x2, ..., xN] kvoli symbolickym operaciam %
x = sym(zeros(1,n));
for k = 1 : n
x(:,k) = eval(sprintf('x%d',k));
end
% Overenie riaditelnosti systemu (1. podmienka pre pouzitie exaktnej linearizacie) %
Q = sym(zeros(n,n));
Q(:,1) = G;
for k = 2 : n
Q(:,k) = jacobian(Q(:,k-1),x) * F - jacobian(F,x) * Q(:,k-1);
end
% Ak determinant nie je cislo ale vyraz, nechaj rozhodnutie o riaditelnosti na pouzivatela %
if ~isempty(findsym(det(Q)))
set(findobj(gcf,'Tag','TextRiaditelnost'),'String','System is controllable if following expression is nonzero:');
set(findobj(gcf,'Tag','EditRiaditelnost'),'Visible','on','String',char(simple(det(Q))));
set(findobj(gcf,'Tag','BtnVystupR'),'Visible','on','Enable','on');
% Ak je determinant ciselny, nenulovy, znamena to, ze system je riaditelny %
elseif (det(Q) ~= 0)
set(findobj(gcf,'Tag','TextRiaditelnost'),'String','System is controllable.');
set(findobj(gcf,'Tag','EditRiaditelnost'),'Visible','off');
set(findobj(gcf,'Tag','BtnVystupR'),'Visible','off','Enable','off');
% Ak je determinant nulovy, system nie je riaditelny => predcasne ukoncit program %
else
set(findobj(gcf,'Tag','TextRiaditelnost'),'String','System is not controllable! The method cannot be applied.');
set(findobj(gcf,'Tag','EditRiaditelnost'),'Visible','off');
set(findobj(gcf,'Tag','BtnVystupR'),'Visible','off','Enable','off');
set(findobj(gcf,'Tag','BtnVystup1'),'Enable','off');
set(findobj(gcf,'Tag','BtnVystup2'),'Enable','off');
set(findobj(gcf,'Tag','ListboxTransf'),'String','');
set(findobj(gcf,'Tag','EditLinVztah'),'String','');
set(findobj(gcf,'Tag','TextVnutDyn'),'ForegroundColor',[0 0 0],'String','');
set(findobj(gcf,'Tag','BtnSimulacia'),'Enable','off');
return;
end
% Relativny stupen systemu %
r = 1;
% Lieove derivovanie vystupu, dovtedy kym Lg == 0 %
syms Lg; Lg(r,:) = jacobian(H,x) * G;
syms Lf; Lf(r,:) = jacobian(H,x) * F;
while (Lg(r,:) == 0)
r = r + 1;
Lg(r,:) = jacobian(Lf(r-1, :), x) * G;
Lf(r,:) = jacobian(Lf(r-1, :), x) * F;
end
% Vypis transformacnych rovnic pre stavove veliciny %
trnsf = sprintf(' q1 = %s', char(H));
qx = sprintf('[%s', char(H));
for k = 2 : r
trnsf = sprintf('%s| q%d = %s', trnsf, k, char(Lf(k-1,:)));
qx = sprintf('%s; %s', qx, char(Lf(k-1,:)));
end,
qx = sprintf('%s]', qx);
set(findobj(gcf,'Tag','ListboxTransf'),'String',trnsf);
% Vypis nelinearnej spatnej vazby (linearizacneho vztahu) %
u = simple((1 / Lg(r,:)) * (-expand(Lf(r,:)) + v));
set(findobj(gcf,'Tag','EditLinVztah'),'String',char(u));
% Vypis varovania pre pripad existencie vnutornej dynamiky %
if (r < n)
set(findobj(gcf,'Tag','TextVnutDyn'),'ForegroundColor',[1 0 0],'String',['Relative degree (',num2str(r),') is lower than system order (',num2str(n),')! It is essential to analyze zero dynamics stability!']);
else
set(findobj(gcf,'Tag','TextVnutDyn'),'ForegroundColor',[0 0 0],'String','Relative degree is equal to system order, therefore, no internal dynamics is present.');
end
% Spristupnenie tlacidiel "pretty" pre vypis do Command Window %
set(findobj(gcf,'Tag','BtnVystup1'),'Enable','on');
set(findobj(gcf,'Tag','BtnVystup2'),'Enable','on');
% Spristupnenie tlacidla "Simulacia" pre otvorenie simulacnej schemy %
set(findobj(gcf,'Tag','BtnSimulacia'),'Enable','on');
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -