📄 tensorlge.m
字号:
function [U, V, eigvalue_U, eigvalue_V, posIdx, Y] = TensorLGE(X, W, D, options)
% TensorLGE: Tensor-based Linear Graph Embedding
%
% [U, V, eigvalue_U, eigvalue_V, posIdx] = TensorLGE(X, W)
% [U, V, eigvalue_U, eigvalue_V, posIdx] = TensorLGE(X, W, D)
% [U, V, eigvalue_U, eigvalue_V, posIdx] = TensorLGE(X, W, D, options)
% [U, V, eigvalue_U, eigvalue_V, posIdx, Y] = TensorLGE(X, W, D, options)
%
% Input:
% X - 3-d data matrix. X(:,:,i) is the i-th data
% sample.
% W - Affinity graph matrix.
% D - Constraint graph matrix.
% Default: D = I
%
% options - Struct value in Matlab. The fields in options
% that can be set:
%
% nRepeat - The repeat times of the
% iterative procedure. Default
% 10
%
% Output:
% U, V - Embedding functions, for a new data point
% (matrix) x, y = U'*x*V will be the embedding
% result of x. You might need to resort each
% element in y based on the posIdx.
% eigvalue_U
% eigvalue_V - corresponding eigenvalue.
%
% Y - The embedding results, Each row vector is a
% data point. The features in Y has been sorted
% that Y(:,i) will be important to Y(:,j) with
% respect to the objective function if i<j
%
% posIdx - Resort idx. For a new data sample (matrix) x,
% y = U'*x*V, y is still a matrix.
% You should convert it to a vector by :
% y = reshape(y,size(U,2)*size(V,2),1)'
% and resort the features by:
% y = y(posIdx)
%
%
%
%
if (~exist('options','var'))
options = [];
end
if isfield(options,'nRepeat')
nRepeat = options.nRepeat; %
else
nRepeat = 10;
end
bD = 1;
if ~exist('D','var') | isempty(D)
bD = 0;
end
[nRow,nCol,nSmp] = size(X);
if size(W,1) ~= nSmp
error('W and X mismatch!');
end
if bD & (size(D,1) ~= nSmp)
error('D and X mismatch!');
end
[i_idx,j_idx,v_idx] = find(W);
if bD
[Di_idx,Dj_idx,Dv_idx] = find(D);
end
for repeat = 1:nRepeat
XV = zeros(nRow,nCol,nSmp);
for i=1:nSmp
XV(:,:,i) = X(:,:,i)*V;
end
S_v = zeros(nRow,nRow);
D_v = zeros(nRow,nRow);
if bD
for idx=1:length(Di_idx)
D_v = D_v + Dv_idx(idx)*XV(:,:,Di_idx(idx))*XV(:,:,Dj_idx(idx))';
end
else
for i=1:nSmp
D_v = D_v + XV(:,:,i)*XV(:,:,i)';
end
end
for idx=1:length(i_idx)
S_v = S_v + v_idx(idx)*XV(:,:,i_idx(idx))*XV(:,:,j_idx(idx))';
end
D_v = max(D_v,D_v');
% if rank(D_v) < nRow
% error('D_v not full rank');
% end
[U, eigvalue_U] = eig(S_v,D_v);
eigvalue_U = diag(eigvalue_U);
[junk, index] = sort(-eigvalue_U);
U = U(:, index);
eigvalue_U = eigvalue_U(index);
for i = 1:size(U,2)
U(:,i) = U(:,i)./norm(U(:,i));
end
XTU = zeros(nCol,nRow,nSmp);
for i=1:nSmp
XTU(:,:,i) = X(:,:,i)'*U;
end
S_u = zeros(nCol,nCol);
D_u = zeros(nCol,nCol);
if bD
for idx=1:length(Di_idx)
D_u = D_u + Dv_idx(idx)*XTU(:,:,Di_idx(idx))*XTU(:,:,Dj_idx(idx))';
end
else
for i=1:nSmp
D_u = D_u + XTU(:,:,i)*XTU(:,:,i)';
end
end
for idx=1:length(i_idx)
S_u = S_u + v_idx(idx)*XTU(:,:,i_idx(idx))*XTU(:,:,j_idx(idx))';
end
D_u = max(D_u,D_u');
S_u = max(S_u,S_u');
% if rank(D_u) < nCol
% error('D_u not full rank');
% end
[V, eigvalue_V] = eig(S_u,D_u);
[junk, index] = sort(-eigvalue_V);
V = V(:, index);
eigvalue_V = eigvalue_V(index);
for i = 1:size(V,2)
V(:,i) = V(:,i)./norm(V(:,i));
end
end
nRow = size(U,2);
nCol = size(V,2);
Y = zeros(nRow,nCol,nSmp);
for i=1:nSmp
Y(:,:,i) = U'*X(:,:,i)*V;
end
Y = reshape(Y,nRow*nCol,nSmp)';
[nSmp,nFea] = size(Y);
if bD
DPrime = sum((Y'*D)'.*Y,1);
else
DPrime = sum(Y.*Y,1);
end
LPrime = sum((Y'*W)'.*Y,1);
DPrime(find(DPrime < 1e-14)) = 10000;
LaplacianScore = LPrime./DPrime;
[dump,posIdx] = sort(-LaplacianScore);
if nargout == 6
Y = Y(:,posIdx);
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -