📄 olpp.m
字号:
function [eigvector, eigvalue, bSuccess, elapse] = OLPP(W, options, data)
% OLPP: Orthogonal Locality Preserving Projections
%
% [eigvector, eigvalue, bSuccess] = OLPP(W, options, data)
%
% Input:
% data - Data matrix. Each row vector of fea is a data point.
% W - Affinity matrix. You can either call "constructW"
% to construct the W, or construct it by yourself.
% options - Struct value in Matlab. The fields in options
% that can be set:
%
% Please see OLGE.m for other options.
%
% Output:
% eigvector - Each column is an embedding function, for a new
% data point (row vector) x, y = x*eigvector
% will be the embedding result of x.
% eigvalue - The sorted eigvalue of OLPP eigen-problem.
%
% bSuccess - 0 or 1. Indicates whether the OLPP calcuation
% is successful. (OLPP needs matrix inverse,
% which will lead to eigen-decompose a
% non-symmetrical matrix. The caculation precsion
% of malab sometimes will cause imaginary numbers
% in eigenvectors. It seems that the caculation
% precsion of matlab is a little bit random, you
% can try again if not successful. More robust
% and efficient algorithms are welcome!)
%
% Please see OLGE.m for other options.
%
%
%
%
% Examples:
%
% fea = rand(50,70);
% options = [];
% options.Metric = 'Euclidean';
% options.NeighborMode = 'KNN';
% options.k = 5;
% options.WeightMode = 'HeatKernel';
% options.t = 1;
% W = constructW(fea,options);
% options.PCARatio = 0.99
% options.ReducedDim = 5;
% bSuccess = 0
% while ~bSuccess
% [eigvector, eigvalue, bSuccess] = OLPP(W, options, fea);
% end
% Y = fea*eigvector;
%
% fea = rand(50,70);
% gnd = [ones(10,1);ones(15,1)*2;ones(10,1)*3;ones(15,1)*4];
% options = [];
% options.Metric = 'Euclidean';
% options.NeighborMode = 'Supervised';
% options.gnd = gnd;
% options.bLDA = 1;
% W = constructW(fea,options);
% options.PCARatio = 1;
% options.ReducedDim = 5;
% while ~bSuccess
% [eigvector, eigvalue, bSuccess] = OLPP(W, options, fea);
% end
% Y = fea*eigvector;
%
%
%
% See also constructW, LPP, LGE, OLGE.
%
%Reference:
%
% Deng Cai and Xiaofei He, "Orthogonal Locality Preserving Indexing"
% The 28th Annual International ACM SIGIR Conference (SIGIR'2005),
% Salvador, Brazil, Aug. 2005.
%
% Deng Cai, Xiaofei He, Jiawei Han and Hong-Jiang Zhang, "Orthogonal
% Laplacianfaces for Face Recognition". IEEE Transactions on Image
% Processing, vol. 15, no. 11, pp. 3608-3614, November, 2006.
%
% Written by Deng Cai (dengcai2 AT cs.uiuc.edu), August/2004, Feb/2006,
% Mar/2007, May/2007
bGlobal = 0;
if ~exist('data','var')
bGlobal = 1;
global data;
end
if (~exist('options','var'))
options = [];
end
[nSmp,nFea] = size(data);
if size(W,1) ~= nSmp
error('W and data mismatch!');
end
D = full(sum(W,2));
if isfield(options,'Regu') & options.Regu
options.ReguAlpha = options.ReguAlpha*sum(D)/length(D);
end
D = sparse(1:nSmp,1:nSmp,D,nSmp,nSmp);
%==========================
% If data is too large, the following centering codes can be commented
%==========================
if isfield(options,'keepMean') & options.keepMean
;
else
if issparse(data)
data = full(data);
end
data = (data - repmat(sampleMean,nSmp,1));
end
%==========================
if bGlobal & isfield(options,'keepMean') & options.keepMean
[eigvector, eigvalue, Success, elapse] = OLGE(W, D, options);
else
[eigvector, eigvalue, Success, elapse] = OLGE(W, D, options, data);
end
eigIdx = find(eigvalue < 1e-3);
eigvalue (eigIdx) = [];
eigvector(:,eigIdx) = [];
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -