📄 gauaw_mod.f90
字号:
#include <misc.h>module gauaw_mod!-----------------------------------------------------------------------!! Purpose:!! Module to calculate the Gaussian Weights. Public interface is! the subroutine "gauaw( a, w, k )".!! Method: !! The algorithm is described in Davis and Rabinowitz,! Journal of Research of the NBS, V 56, Jan 1956.!! Author: David Williamson, Jim Hack!!----------------------------------------------------------------------- save!! Public variables!#ifdef PGF90 integer, public, parameter :: r16 = selected_real_kind(12)#else integer, public, parameter :: r16 = selected_real_kind(17)#endif!! Public subroutines! public gauaw!! Variables private to routines inside this module! real(r16), private :: pi ! value of pi real(r16), private, parameter :: one = 1.0 ! 1. in real(r16). Needed by atan!! Functions private to routines inside this module! private bsslzrcontains subroutine gauaw(a, w, k)!-----------------------------------------------------------------------!! Calculate sine of latitudes a(k) and weights w(k) for the gaussian! quadrature. The algorithm is described in Davis and Rabinowitz,! Journal of Research of the NBS, V 56, Jan 1956.! The zeros of the bessel function j0, which are obtained from bsslzr,! are used as a first guess for the abscissa.!! Modified 1/23/97 by Jim Rosinski to use real*16 arithmetic in order to! achieve (nearly) identical weights and latitudes on all machines.!!---------------------------Code history--------------------------------!! Original version: CCM1! Standardized: L. Bath, Jun 1992! L. Buja, Feb 1996! Reviewed: D. Williamson, J. Hack, Aug 1992! D. Williamson, J. Hack, Feb 1996!!-----------------------------------------------------------------------!! $Id: gauaw_mod.F90,v 1.1.2.1 2002/02/16 00:47:48 erik Exp $! $Author: erik $!!----------------------------------------------------------------------- use precision implicit none!------------------------------Arguments--------------------------------! integer , intent(in) :: k ! number of latitudes pole to pole real(r8), intent(out) :: a(k) ! sine of latitudes real(r8), intent(out) :: w(k) ! gaussian weights!!---------------------------Local workspace-----------------------------! real(r16) sinlat(k) ! sine of latitudes real(r16) wgt(k) ! gaussian weights real(r16) eps ! convergence criterion real(r16) c ! constant combination real(r16) fk ! real k real(r16) xz ! abscissa estimate real(r16) pkm1 ! | real(r16) pkm2 ! |-polynomials real(r16) pkmrk ! | real(r16) pk ! | real(r16) sp ! current iteration latitude increment real(r16) avsp ! |sp| real(r16) fn ! real n#if ( defined PGF90 ) parameter (eps = 1.D-15)#else parameter (eps = 1.D-27)#endif integer kk ! k/2 (number of latitudes in hemisphere) integer is ! latitude index integer iter ! iteration counter integer n,l ! indices!!-----------------------------------------------------------------------! pi = 4.*atan(one)!! The value eps, used for convergence tests in the iterations,! can be changed. Newton iteration is used to find the abscissas.! c = (1.-(2./pi)**2)*0.25 fk = k kk = k/2 call bsslzr(sinlat,kk) do is=1,kk xz = cos(sinlat(is)/sqrt((fk+0.5)**2+c))!! This is the first approximation to xz! iter = 0 10 continue pkm2 = 1. pkm1 = xz iter = iter + 1 if (iter.gt.10) then!! Error exit! write(6,*)'GAUAW:Error exit,no convergence in 10 iterations' call endrun end if!! Computation of the legendre polynomial! do n=2,k fn = n pk = ((2.*fn-1.)*xz*pkm1-(fn-1.)*pkm2)/fn pkm2 = pkm1 pkm1 = pk enddo pkm1 = pkm2 pkmrk = (fk*(pkm1-xz*pk))/(1.-xz**2) sp = pk/pkmrk xz = xz - sp avsp = abs(sp) if (avsp.gt.eps) go to 10 sinlat(is) = xz wgt(is) = (2.*(1.-xz**2))/(fk*pkm1)**2 end do! if (k.ne.kk*2) then!! For odd k computation of weight at the equator! sinlat(kk+1) = 0. pk = 2./fk**2 do n=2,k,2 fn = n pk = pk*fn**2/(fn-1.)**2 end do wgt(kk+1) = pk end if!! Complete the sets of abscissas and weights, using the symmetry.! Also note truncation from real(r16) to real*8! do n=1,kk l = k + 1 - n a(n) = sinlat(n) a(l) = -sinlat(n) w(n) = wgt(n) w(l) = wgt(n) end do return end subroutine gauaw !=========================================================================== subroutine bsslzr(bes, n) !-----------------------------------------------! M o d u l e s !----------------------------------------------- use precision!! Return n zeros (or if n>50, approximate zeros), of the Bessel function! j0,in the array bes. The first 50 zeros will be given exactly, and the! remaining zeros are computed by extrapolation,and therefore not exact.!! Modified 1/23/97 by Jim Rosinski to use real*16 arithmetic!!---------------------------Code history--------------------------------!! Original version: CCM1! Standardized: J. Rosinski, June 1992! Reviewed: J. Hack, D. Williamson, August 1992! Reviewed: J. Hack, D. Williamson, April 1996!!----------------------------------------------------------------------- implicit none!-----------------------------------------------! D u m m y A r g u m e n t s!----------------------------------------------- integer , intent(in) :: n real(r16) , intent(inout) :: bes(n) !-----------------------------------------------! L o c a l V a r i a b l e s!----------------------------------------------- integer :: j, nn real(r16), dimension(50) :: bz save bz !-----------------------------------------------!------------------------------Arguments--------------------------------!!!---------------------------Local workspace-----------------------------!! data bz/ 2.4048255577, 5.5200781103, 8.6537279129, 11.7915344391, & 14.9309177086, 18.0710639679, 21.2116366299, 24.3524715308, & 27.4934791320, 30.6346064684, 33.7758202136, 36.9170983537, & 40.0584257646, 43.1997917132, 46.3411883717, 49.4826098974, & 52.6240518411, 55.7655107550, 58.9069839261, 62.0484691902, & 65.1899648002, 68.3314693299, 71.4729816036, 74.6145006437, & 77.7560256304, 80.8975558711, 84.0390907769, 87.1806298436, & 90.3221726372, 93.4637187819, 96.6052679510, 99.7468198587, & 102.8883742542, 106.0299309165, 109.1714896498, 112.3130502805, & 115.4546126537, 118.5961766309, 121.7377420880, 124.8793089132, & 128.0208770059, 131.1624462752, 134.3040166383, 137.4455880203, & 140.5871603528, 143.7287335737, 146.8703076258, 150.0118824570, & 153.1534580192, 156.2950342685/ ! nn = n if (n > 50) then bes(50) = bz(50) do j = 51, n bes(j) = bes(j-1) + pi end do nn = 49 endif bes(:nn) = bz(:nn) return end subroutine bsslzr end module gauaw_mod
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -