⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 tstep1.f90

📁 CCSM Research Tools: Community Atmosphere Model (CAM)
💻 F90
字号:
#include <misc.h>#include <params.h>! Note that this routine has 2 complete blocks of code for PVP vs.! non-PVP.  This is due to the fact that spectral coefficients are! stored consecutively along diagonals of M-N wavenumber space when the! target architecture is PVP (optimal for vectorization), and along! total wavenumber N otherwise (optimal for message-passing).#if ( defined PVP )subroutine tstep1(n       ,zdt     )!-----------------------------------------------------------------------!! Purpose:! Solution of the vertically coupled system of equations arising! from the semi-impicit equations for each spectral element along! the n(th) diagonal. (Note, n is distinct from the two dimensional! wavenumber which is also often denoted n.) The inverse matrix depends! only on two dimensional wavenumber and the reference atmosphere.! It is precomputed and stored for use during the forecast. The routine! overwrites the d,T and lnps coefficients with the new values.!! Original version:  CCM1!!-----------------------------------------------------------------------!! $Id: tstep1.F90,v 1.3 2000/12/20 18:02:17 rosinski Exp $! $Author: rosinski $!!-----------------------------------------------------------------------  use precision  use pmgrid  use pspect  use comspe  use comslt, only: epssld  implicit none#include <comhyb.h>use commap!------------------------------Arguments--------------------------------!  integer , intent(in)   :: n   ! index of spectral diagonal being calculated!                               ! this call (not two dimensional wavenumber)  real(r8), intent(in)   :: zdt ! timestep, dt (seconds)!!---------------------------Local workspace-----------------------------!  real(r8) z (2*pmmax,plev) ! workspace for computation of spectral array d  real(r8) zz(2*pmmax,plev) ! workspace for computation of spectral array vz  real(r8) ztemp            ! temporary workspace  real(r8) onepeps          ! decentering coefficient  integer m                 ! diagonal element (index) of complex array  integer k,kk              ! level indices  integer irh               ! index into levels of spectral arrays  integer irhr,irhi         ! index into real, imaginary coefficients  integer isp               ! index into spectral arrays!!-----------------------------------------------------------------------!! Set offsets for beginning of diagonal being calculated this call!  isp = nco2(n) - 2  onepeps = 1. + epssld!! Solution of helmholtz equation! First: initialize temporary space for solution!  do k=1,plev     do m=1,2*pmmax        z (m,k) = 0.        zz(m,k) = 0.     end do  end do!! Transform back from normal mode space!  do k=1,plev     irhr = nco2(n) - 3     irhi = irhr + 1     do kk=1,plev        do m=1,nm(n)           z (2*m-1,k) = z (2*m-1,k) + bm1(kk,k)*dnm (irhr+2*m,kk)           z (2*m  ,k) = z (2*m  ,k) + bm1(kk,k)*dnm (irhi+2*m,kk)           zz(2*m-1,k) = zz(2*m-1,k) + bm1(kk,k)*vznm(irhr+2*m,kk)           zz(2*m  ,k) = zz(2*m  ,k) + bm1(kk,k)*vznm(irhi+2*m,kk)        end do     end do                  ! inner loop over levels  end do                    ! outer loop over levels!! Move solution for divergence and vorticity to d and vz.!  irh = nco2(n) - 2  do k=1,plev     do m=1,2*nm(n)        d (irh+m,k) = z (m,k)        vz(irh+m,k) = zz(m,k)     end do  end do!! Complete ln(pstar) and T forecasts! Add semi-implicit part to surface pressure (vector multiply)!  do k=1,plev     ztemp = onepeps*zdt*hypd(k)/hypi(plevp)     do m=1,2*nm(n)        alps(isp+m) = alps(isp+m) - ztemp*d(isp+m,k)     end do  end do!! Add ln(Ps)star back in to get full ln(Ps)!  do m=1,2*nm(n)     alps(isp+m) = alps(isp+m) + lnpstar(isp+m)  end do!! Add semi-implicit part to temperature (matrix multiply)!  do k=1,plev     do kk=1,plev        ztemp = onepeps*zdt*tau(kk,k)        do m=1,2*nm(n)           t(isp+m,k) = t(isp+m,k) - ztemp*d(isp+m,kk)        end do     end do  end do!  return#else  subroutine tstep1(m       ,zdt     )!-----------------------------------------------------------------------!! Purpose:! Solution of the vertically coupled system of equations arising! from the semi-impicit equations for each spectral element along! two dimensional wavenumber n.  The inverse matrix depends! only on two dimensional wavenumber and the reference atmosphere.! It is precomputed and stored for use during the forecast. The routine! overwrites the d,T and lnps coefficients with the new values.!!---------------------------Code history--------------------------------!! Original version:  CCM1!!-----------------------------------------------------------------------!! $Id: tstep1.F90,v 1.3 2000/12/20 18:02:17 rosinski Exp $! $Author: rosinski $!!-----------------------------------------------------------------------    use precision    use pmgrid    use pspect    use comspe    use comslt, only: epssld    use commap    implicit none#include <comhyb.h>!------------------------------Arguments--------------------------------!    integer , intent(in)   :: m   ! Fourier wavenumber                   real(r8), intent(in)   :: zdt ! timestep, dt (seconds)!!---------------------------Local workspace-----------------------------!    real(r8) z (2*pnmax,plev) ! workspace for computation of spectral array d    real(r8) zz(2*pnmax,plev) ! workspace for computation of spectral array vz    real(r8) ztemp            ! temporary workspace    real(r8) onepeps          ! decentering coefficient    integer n,j               ! 2-d wavenumber index    integer k,kk              ! level indices    integer mr,mc             ! real and imaginary spectral indices    integer ir,ii             ! real and imaginary spectral indices!!-----------------------------------------------------------------------!! Complete rhs of helmholtz eq.!    mr = nstart(m)    mc = 2*mr    onepeps = 1. + epssld!! Solution of helmholtz equation! First: initialize temporary space for solution!    do k=1,plev       do j=1,2*pnmax          z (j,k) = 0.          zz(j,k) = 0.       end do    end do!! Transform back from normal mode space!    do k=1,plev       do kk=1,plev          do n=1,nlen(m)             ir = mc + 2*n - 1             ii = ir + 1             z (2*n-1,k) = z (2*n-1,k) + bm1(kk,k)*dnm (ir,kk)             z (2*n  ,k) = z (2*n  ,k) + bm1(kk,k)*dnm (ii,kk)             zz(2*n-1,k) = zz(2*n-1,k) + bm1(kk,k)*vznm(ir,kk)             zz(2*n  ,k) = zz(2*n  ,k) + bm1(kk,k)*vznm(ii,kk)          end do       end do                  ! inner loop over levels    end do                    ! outer loop over levels!! Move solution for divergence and vorticity to d and vz.!    do k=1,plev       do n=1,nlen(m)          ir = mc + 2*n - 1          ii = ir + 1          d (ir,k) = z (2*n-1,k)          d (ii,k) = z (2*n  ,k)          vz(ir,k) = zz(2*n-1,k)          vz(ii,k) = zz(2*n  ,k)       end do    end do!! Complete ln(pstar) and T forecasts! Add semi-implicit part to surface pressure (vector multiply)!    do k=1,plev       ztemp = onepeps*zdt*hypd(k)/hypi(plevp)       do n=1,nlen(m)          ir = mc + 2*n - 1          ii = ir + 1          alps(ir) = alps(ir) - ztemp*d(ir,k)          alps(ii) = alps(ii) - ztemp*d(ii,k)       end do    end do!! Add ln(Ps)star back in to get full ln(Ps)!    do n=1,nlen(m)       ir = mc + 2*n - 1       ii = ir + 1       alps(ir) = alps(ir) + lnpstar(ir)       alps(ii) = alps(ii) + lnpstar(ii)    end do!! Add semi-implicit part to temperature (matrix multiply)!    do k=1,plev       do kk=1,plev          ztemp = onepeps*zdt*tau(kk,k)          do n=1,nlen(m)             ir = mc + 2*n - 1             ii = ir + 1             t(ir,k) = t(ir,k) - ztemp*d(ir,kk)             t(ii,k) = t(ii,k) - ztemp*d(ii,kk)          end do       end do    end do!    return#endif  end subroutine tstep1

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -