📄 varphi_update.m
字号:
%This computes the posterior mean of the covariance hyperparameters using a
%simple importance sampler
function vp = varphi_update(X,M,psi,Nos_Samps,...
Kernel_Type,Poly_Kernel_Power)
V=[];
W=[];
N = size(X,1);
for i=1:Nos_Samps
varphi = exponential_rnd(psi);
Varphi = diag(varphi);
K = create_kernel_no_scaling(X,X,...
Kernel_Type,Varphi,...
Poly_Kernel_Power) + eye(N);
ws = prod(diag(exp(-0.5*M'*inv(K)*M)));
V=[V;varphi];
W=[W;ws];
end
W=W./sum(W);
vp=sum(V.*repmat(W,1,size(V,2)));
%Little function to generate exponential random variates
function ernd = exponential_rnd(lambda)
ernd = -log(rand(size(lambda)))./lambda;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -