📄 sde_compute_hessian.m
字号:
function hessian = SDE_compute_hessian(lossfunction,theta,OWNTIME,TIME,VRBL,XOBS,PROBLEM,NUMSIM,SDETYPE,PARBASE,PARMIN,PARMAX,PARMASK,INTEGRATOR,NUMDEPVARS,SEED)
% Computes central approximation of Hessian at theta for free parameters with check on parameter bounds.
%
% usage: hessian = SDE_compute_hessian(lossfunction,theta,OWNTIME,TIME,VRBL,XOBS,PROBLEM,NUMSIM,SDETYPE,PARBASE,PARMIN,PARMAX,PARMASK,INTEGRATOR,NUMDEPVARS,SEED)
%
% IN:
% lossfunction; the name of the function computing the NEGATIVE log-likelihood at theta; can be 'SDE_PSML' or 'SDE_NPSML'
% theta; the FREE parameter values at which to compute the hessian
% OWNTIME; vector containing the equispaced simulation times sorted in ascending order.
% It has starting simulation-time in first and ending simulation-time in last position.
% Thus OWNTIME(i) - OWNTIME(i-1) = h, where h is the fixed stepsize for the numerical integration (i=2,3,...)
% TIME; the array of unique observation times
% VRBL; the array of unique label-variables
% XOBS; the matrix-shaped observed data
% NUMSIM; the number of desired simulations for the SDE numerical integration
% PROBLEM; the user defined name of the current problem/experiment/example etc. (e.g. 'mySDE')
% SDETYPE; the SDE definition: can be 'Ito' or 'Strat' (Stratonovich)
% PARBASE; the same as bigtheta, provides parameters starting values for the optimization procedure
% PARMIN; array of lower bounds for the complete structural parameter vector bigtheta
% PARMAX; array of upper bounds for the complete structural parameter vector bigtheta
% PARMASK; an array containing ones in correspondence of the parameters in bigtheta to be estimated
% and zeros in correspondence of the parameters to be held fixed (constant); it has the same
% length of bigtheta.
% INTEGRATOR; the SDE fixed stepsize numerical integration method: can be 'EM' (Euler-Maruyama) or 'Mil' (Milstein)
% NUMDEPVARS; the number of dependent variables, i.e. the SDE dimension
% SEED; the seed for the generation of pseudo-random normal variates, i.e. the argument for randn('state',SEED);
% type 'help randn' for details;
%
% OUT: hessian; the central Hessian matrix for the log-likelihood at theta
% November 2007, Umberto Picchini
% October 2005, Andrea De Gaetano (BioMatLab IASI-CNR, www.biomatematica.it)
% Copyright (C) 2007, Umberto Picchini
% umberto.picchini@biomatematica.it
% http://www.biomatematica.it/Pages/Picchini.html
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
% input check
error(nargchk(16, 16, nargin));
[n1,n2]=rat(NUMSIM);
if(~isequal(n2,1) || isempty(NUMSIM) || NUMSIM <= 0)
error('The number of trajectories NUMSIM must be a positive integer');
end
[n1,n2]=rat(NUMDEPVARS);
if(~isequal(n2,1) || isempty(NUMDEPVARS) || NUMDEPVARS <= 0)
error('The number of variables NUMDEPVARS must be a positive integer');
end
if(strcmp(upper(SDETYPE),'ITO')==0 && strcmp(upper(SDETYPE),'STRAT')==0)
error('SDETYPE must be ''ITO'' or ''STRAT'' (Stratonovich)');
end
if(strcmp(upper(INTEGRATOR),'EM')==0 && strcmp(upper(INTEGRATOR),'MIL')==0)
error('INTEGRATOR must be ''EM'' (Euler-Maruyama) or ''MIL'' (Milstein)');
end
if(strcmp(upper(lossfunction),'SDE_PSML')==0 && strcmp(upper(lossfunction),'SDE_NPSML')==0)
error('LOSSFUNCTION must be ''SDE_PSML'' or ''SDE_NPSML''');
end
hessian_target_step = 1.e-5;
npar = length(theta);
% Compute baseline loss
fatmin = feval(lossfunction,theta,OWNTIME,TIME,VRBL,XOBS,PROBLEM,NUMSIM,SDETYPE,PARBASE,PARMIN,PARMAX,PARMASK,INTEGRATOR,NUMDEPVARS,SEED);
if (SDE_parcheck(theta,PARMIN,PARMAX,PARMASK,PARBASE) > 0)
error('\n\n\nUNACCEPTABLE STARTING VALUES FOR HESSIAN COMPUTATION');
end
% Create and initialize to Identity
hessian = eye(npar);
% fprintf(1,'\n\nComputing Hessian:');
handle = waitbar(0,'Computing Hessian...');
for p=1:npar
% fprintf(1,'.');
waitbar(p/npar);
pvalue = theta(p);
% DIAGONAL ELEMENT
pstep = hessian_target_step * (1 + abs(pvalue));
theta(p) = pvalue - pstep; % check on the low side...
while (SDE_parcheck(theta,PARMIN,PARMAX,PARMASK,PARBASE) > 0)
pstep = pstep / 2.;
theta(p) = pvalue - pstep;
end
theta(p) = pvalue + pstep; % and continue checking on the high side...
while (SDE_parcheck(theta,PARMIN,PARMAX,PARMASK,PARBASE) > 0)
pstep = pstep / 2.;
theta(p) = pvalue + pstep;
end
fpp = feval(lossfunction,theta,OWNTIME,TIME,VRBL,XOBS,PROBLEM,NUMSIM,SDETYPE,PARBASE,PARMIN,PARMAX,PARMASK,INTEGRATOR,NUMDEPVARS,SEED);
theta(p) = pvalue - pstep;
fpm = feval(lossfunction,theta,OWNTIME,TIME,VRBL,XOBS,PROBLEM,NUMSIM,SDETYPE,PARBASE,PARMIN,PARMAX,PARMASK,INTEGRATOR,NUMDEPVARS,SEED);
hessian(p,p)= (fpp + fpm - 2. * fatmin) / (pstep * pstep) ;
% OFF-DIAGONAL ELEMENTS
for q=p+1:npar
qvalue = theta(q);
pstep = hessian_target_step * (1 + abs(pvalue));
qstep = hessian_target_step * (1 + abs(qvalue));
failureflag=0;
theta(p) = pvalue - pstep;
theta(q) = qvalue - qstep;
failureflag = failureflag + SDE_parcheck(theta,PARMIN,PARMAX,PARMASK,PARBASE);
theta(p) = pvalue - pstep;
theta(q) = qvalue + qstep;
failureflag = failureflag + SDE_parcheck(theta,PARMIN,PARMAX,PARMASK,PARBASE);
theta(p) = pvalue + pstep;
theta(q) = qvalue - qstep;
failureflag = failureflag + SDE_parcheck(theta,PARMIN,PARMAX,PARMASK,PARBASE);
theta(p) = pvalue + pstep;
theta(q) = qvalue + qstep;
failureflag = failureflag + SDE_parcheck(theta,PARMIN,PARMAX,PARMASK,PARBASE);
while (failureflag > 0)
pstep = pstep/2;
qstep = qstep/2;
failureflag=0;
theta(p) = pvalue - pstep;
theta(q) = qvalue - qstep;
failureflag = failureflag + SDE_parcheck(theta,PARMIN,PARMAX,PARMASK,PARBASE);
theta(p) = pvalue - pstep;
theta(q) = qvalue + qstep;
failureflag = failureflag + SDE_parcheck(theta,PARMIN,PARMAX,PARMASK,PARBASE);
theta(p) = pvalue + pstep;
theta(q) = qvalue - qstep;
failureflag = failureflag + SDE_parcheck(theta,PARMIN,PARMAX,PARMASK,PARBASE);
theta(p) = pvalue + pstep;
theta(q) = qvalue + qstep;
failureflag = failureflag + SDE_parcheck(theta,PARMIN,PARMAX,PARMASK,PARBASE);
end
theta(p) = pvalue - pstep;
theta(q) = qvalue - qstep;
fpmqm = feval(lossfunction,theta,OWNTIME,TIME,VRBL,XOBS,PROBLEM,NUMSIM,SDETYPE,PARBASE,PARMIN,PARMAX,PARMASK,INTEGRATOR,NUMDEPVARS,SEED);
theta(p) = pvalue - pstep;
theta(q) = qvalue + qstep;
fpmqp = feval(lossfunction,theta,OWNTIME,TIME,VRBL,XOBS,PROBLEM,NUMSIM,SDETYPE,PARBASE,PARMIN,PARMAX,PARMASK,INTEGRATOR,NUMDEPVARS,SEED);
theta(p) = pvalue + pstep;
theta(q) = qvalue - qstep;
fppqm = feval(lossfunction,theta,OWNTIME,TIME,VRBL,XOBS,PROBLEM,NUMSIM,SDETYPE,PARBASE,PARMIN,PARMAX,PARMASK,INTEGRATOR,NUMDEPVARS,SEED);
theta(p) = pvalue + pstep;
theta(q) = qvalue + qstep;
fppqp = feval(lossfunction,theta,OWNTIME,TIME,VRBL,XOBS,PROBLEM,NUMSIM,SDETYPE,PARBASE,PARMIN,PARMAX,PARMASK,INTEGRATOR,NUMDEPVARS,SEED);
hessian(p,q) = (fppqp - fppqm - fpmqp + fpmqm) / (4 * pstep * qstep) ;
theta(q) = qvalue;
end
theta(p) = pvalue;
end
close(handle);
% retrieve other half of the hessian
for p=1:npar
for q=1:p-1
hessian(p,q)= hessian(q,p);
end
end
% return the correct hessian: in fact the 'lossfunction' used in the feval invocations above is the NEGATIVE
% loglikelihood
hessian = - hessian;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -