📄 sde_npsml_euler.m
字号:
function xhat_endpoint = SDE_NPSML_euler(bigtheta,OWNTIME,TIME,VRBL,XOBS,PROBLEM,NUMSIM,SDETYPE,NUMDEPVARS,SEED)
% Returns the Euler-Maruyama (read the warning below) xhat estimated values at n time-points t_1,t_2,...,t_n for
% the stochastic model dX(t) =... defined by a system of (Ito) SDEs considered on the time-intervals [t_0,t_1],...,[t_(n-1),t_n] where,
% for each time-interval, the initial condition is given by X(t_(k)) = XOBS(t_(k)), k=1,...,n-1.
%
% Warning: To be used ONLY with the implementation of the Non-Parametric SML algorithm as described in [1] (see SDE_NPSML).
% For different purposes use SDE_euler.m
%
% IN:
% bigtheta; complete structural parameter vector
% OWNTIME; vector containing the equispaced simulation times sorted in ascending order.
% It has starting simulation-time in first and ending simulation-time in last position.
% Thus OWNTIME(i) - OWNTIME(i-1) = h, where h is the fixed stepsize
% for the numerical intregration (i=2,3,...)
% TIME; the array of unique observation times
% VRBL; the array of unique label-variables
% XOBS; the matrix-shaped observed data
% NUMSIM; the number of desired simulations for the SDE numerical integration
% PROBLEM; the user defined name of the current problem/experiment/example etc. (e.g. 'mySDE')
% SDETYPE; the SDE definition: must be 'Ito'
% NUMDEPVARS; the number of dependent variables, i.e. the SDE dimension
% SEED; the seed for the generation of pseudo-random normal variates, i.e. the argument for randn('state',SEED);
% type 'help randn' for details;
% OUT: xhat_endpoint; the Euler-Maruyama approximation at the intervals end-points
%
% References:
% [1] A.S. Hurn, K.A. Lindsay and V.L. Martin "On the effficacy of simulated maximum likelihood for estimating the parameters of
% stochastic differential equations", J. Time Series Analysis vol. 24, n
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -