⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 sde_euler.m

📁 SIMULATION AND ESTIMATION OF STOCHASTIC DIFFERENTIAL EQUATIONS WITH MATLAB
💻 M
字号:
function xhat = SDE_euler(bigtheta,PROBLEM,OWNTIME,NUMDEPVARS,NUMSIM,SDETYPE,SEED)

% Fixed stepsize Euler-Maruyama scheme for numerical solution of Ito SDE systems.
%
% usage: xhat = SDE_euler(bigtheta)
%
% IN:     bigtheta; complete vector of structural model parameters
%         PROBLEM; the user defined name of the current problem/experiment/example etc. (e.g. 'mySDE')
%         OWNTIME; vector containing the equispaced simulation times sorted in ascending order. 
%                   It has starting simulation-time in first and ending simulation-time in last position. 
%                   Thus OWNTIME(i) - OWNTIME(i-1) = h, where h is the fixed stepsize 
%                   for the numerical intregration (i=2,3,...)
%         NUMDEPVARS; the number of dependent variables, i.e. the SDE dimension
%         NUMSIM; the number of desired simulations for the SDE numerical integration 
%         SDETYPE; the SDE definition: must be 'Ito' 
%         SEED; the seed for the generation of pseudo-random normal variates, i.e. the argument for randn('state',SEED);
%               type 'help randn' for details;
% OUTPUT: xhat; the array of the SDE approximated solution at times OWNTIME 
%
% REFERENCE: [1] Kloeden, Platen and Schurz "Numerical solution of SDE through computer experiments", Springer-Verlag 2nd edition 1997

% Copyright (C) 2007, Umberto Picchini  
% umberto.picchini@biomatematica.it
% http://www.biomatematica.it/Pages/Picchini.html
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
% 
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
% 
% You should have received a copy of the GNU General Public License
% along with this program.  If not, see <http://www.gnu.org/licenses/>.

% input check
error(nargchk(7, 7, nargin));
[n1,n2]=rat(NUMSIM);
if(~isequal(n2,1) || isempty(NUMSIM) || NUMSIM <= 0)
    error('The number of trajectories NUMSIM must be a positive integer');
end
[n1,n2]=rat(NUMDEPVARS);
if(~isequal(n2,1) || isempty(NUMDEPVARS) || NUMDEPVARS <= 0)
    error('The number of variables NUMDEPVARS must be a positive integer');
end

switch upper(SDETYPE)
    case 'ITO'
        ok = 1;
    otherwise
        error('The Euler-Maruyama scheme is defined only for Ito SDE');
end
        

N = length(OWNTIME);
handle = waitbar(0,'Computing trajectories...');

[t, xstart] = feval([PROBLEM, '_sdefile'],OWNTIME(1),[],'init',bigtheta,SDETYPE,NUMDEPVARS,NUMSIM);  % initial conditions

XVARS = zeros(N,NUMSIM*NUMDEPVARS);  % the predictions matrix
xstart = xstart';
XVARS(1,:) = xstart([1:size(xstart,1)]' * ones(1,NUMSIM), :)'; % ugly but faster than XVARS(1,:) = repmat(xstart,1,NUMSIM);

% Control the generation of the pseudo-random standard gaussian draws to
% get repeatable results
if(isempty(SEED))
    randn('state',0);
else
    randn('state',SEED);
end 

for j=2:N
    waitbar((j-1)/(N-1));
    % t is inherited as the starting time for this interval
    x = XVARS(j-1, :);           % the value(s) of XVARS at the start of the interval
    h = OWNTIME(j)- t;           % the delta time (end - start) -> fixed size of the step .
    
    % Wiener increments generation with 'antithetic variates' variance reduction method
    Winc = zeros(1,NUMDEPVARS*NUMSIM);
    if(mod(NUMDEPVARS*NUMSIM,2)==0)
        Winc(1 : NUMDEPVARS * NUMSIM/2) = sqrt(h)*randn(1,NUMDEPVARS * NUMSIM/2); % the Wiener increment(s) dWj; 
        Winc(NUMDEPVARS * NUMSIM/2 + 1 : end) = -Winc(1 : NUMDEPVARS * NUMSIM/2); % retrieve the other half of the increments using the 'antithetic variates' variance reduction method;
    else
       % adjustment when (number of simulations * number of variables) is odd
        Winc(1 : round(NUMSIM*NUMDEPVARS/2)) = sqrt(h)*randn(1,round(NUMSIM*NUMDEPVARS/2));  % the Wiener increment(s) dWj; 
        Winc(round(NUMSIM*NUMDEPVARS/2)+1:end) = -Winc(1 : round(NUMSIM*NUMDEPVARS/2)-1);  % retrieve the other half of the increments using the 'antithetic variates' variance reduction method;
    end

    [f,g] = feval([PROBLEM, '_sdefile'], t, x, [], bigtheta,SDETYPE,NUMDEPVARS,NUMSIM);     % the sdefile output
    
    XVARS(j , :) = x + f * h + g .* Winc ;  % the Euler-Maruyama scheme for Ito SDEs with DIAGONAL noise
    
    t = OWNTIME(j);    % now both t and j refer to the end-of-interval   
end

xhat = XVARS;
close(handle);

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -