⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 sde_milstein_demo.m

📁 SIMULATION AND ESTIMATION OF STOCHASTIC DIFFERENTIAL EQUATIONS WITH MATLAB
💻 M
字号:
function xhat = SDE_milstein_demo(bigtheta)

% Fixed stepsize Milstein scheme [1], to be used only with the demo routines
%
% xhat = SDE_milstein_demo(bigtheta)
%
% IN:     bigtheta; complete vector of structural model parameters
% OUTPUT: xhat; the SDE approximated solution
%
% Global variables definitions:
%         global PROBLEM; the user defined name of the current problem/experiment/example etc. (e.g. 'mySDE')
%         global OWNTIME; vector containing the equispaced simulation times sorted in ascending order. 
%                         It has starting simulation-time in first and ending simulation-time in last position. 
%                         Thus OWNTIME(i) - OWNTIME(i-1) = h, where h is the fixed stepsize 
%                         for the numerical intregration (i=2,3,...)
%         global NUMDEPVARS; the number of dependent variables, i.e. the SDE dimension
%         global NUMSIM; the number of desired simulations for the SDE numerical integration 
%         global DW; the stochastic Wiener increments dW with dW(1,:) = 0; 
%         global XVARS; the predicted values for the SDE state variables
%         global SDETYPE; the SDE definition: can be 'Ito' or 'Strat' (Stratonovich)
%
% REFERENCE: [1] Kloeden and Platen "Numerical solution of Stochastic Differential Equations", Springer-Verlag 1992

% Copyright (C) 2007, Umberto Picchini  
% umberto.picchini@biomatematica.it
% http://www.biomatematica.it/Pages/Picchini.html
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
% 
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
% 
% You should have received a copy of the GNU General Public License
% along with this program.  If not, see <http://www.gnu.org/licenses/>.

global PROBLEM OWNTIME NUMSIM NUMDEPVARS XVARS SDETYPE DW;

N = length(OWNTIME);
handle = waitbar(0,'Computing trajectories...');

[t, xstart] = feval([PROBLEM, '_sdefile'],OWNTIME(1),[],'init',bigtheta);  % initial conditions
XVARS = zeros(N,NUMSIM*NUMDEPVARS);  % the predictions matrix
XVARS(1,:) = xstart([1:size(xstart,1)]' * ones(1,NUMSIM), :)'; % ugly but faster than XVARS(1,:) = repmat(xstart,1,NUMSIM);

for j=2:N
    waitbar((j-1)/(N-1));
    % t is inherited as the starting time for this interval
    x = XVARS(j-1, :);           % the value(s) of XVARS at the start of the interval
    h = OWNTIME(j)- t;           % the delta time (end - start) -> fixed size of the step .
    Winc = DW(j,:);  % the Wiener increment(s) dWj (these are the SAME increments used for the true solution, see SDE_demo.m)
   
    [f,g,dg] = feval([PROBLEM, '_sdefile'], t, x, [], bigtheta);     % the sdefile output

    switch SDETYPE
    case 'Ito'
          XVARS(j , :) = x + f * h + g .* Winc + 1/2 * g .* dg .* (Winc.^2-h) ;  % the Milstein scheme for Ito SDEs with 'diagonal noise' 
    case 'Strat'
          XVARS(j , :) = x + f * h + g .* Winc + 1/2 * g .* dg .* Winc.^2 ;  % the Milstein scheme for Stratonovich SDEs with 'diagonal noise'      
    end

    t = OWNTIME(j);    % now both t and j refer to the end-of-interval   
end

xhat = XVARS;
close(handle);



⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -