📄 demo_sdefile.m
字号:
function [out1,out2,out3] = demo_sdefile(t,x,flag,bigtheta)
% SDE model definition: drift, diffusion, derivatives and initial condition.
%
% [out1,out2,out3] = demo_sdefile(t,x,flag,bigtheta)
%
% IN: t; working value of independent variable (time)
% x; working value of dependent variable
% flag; a switch, with values 'init' or otherwise
% bigtheta; complete structural parameter vector
% global SDETYPE; the SDE definition: can be 'Ito' or 'Strat' (Stratonovich)
% global NUMDEPVARS; the number of dependent variables, i.e. the SDE dimension
% global NUMSIM; the number of desired simulations for the SDE numerical integration
% OUT: out1; in case of flag='init' is just the initial time, otherwise it is the (vector of) SDE drift(s)
% out2; in case of flag='init' is the initial value of the dependent variables. Otherwise it is the (vector of) SDE diffusion(s)
% out3; in case of flag='init' it is nothing. Otherwise it is the (vector of) SDE partial derivative(s) of the diffusion term
%
% Copyright (C) 2007, Umberto Picchini
% umberto.picchini@biomatematica.it
% http://www.biomatematica.it/Pages/Picchini.html
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program. If not, see <http://www.gnu.org/licenses/>.
global SDETYPE NUMDEPVARS NUMSIM;
% Parameters
Xzero = bigtheta(1);
a = bigtheta(2);
if nargin < 3 || isempty(flag)
xsplitted = SDE_split_sdeinput(x,NUMDEPVARS);
%::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
%:::::::::::::::::::::: DEFINE HERE THE SDE :::::::::::::::::::::::::::::::::
%::::: (define the initial conditions at the bottom of the page) ::::::::::::::
%::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
x = xsplitted{1}; % e.g. for a thre-dimensional SDE write X1 = xsplitted{1}; X2 = xsplitted{2}; X3 = xsplitted{3};
switch SDETYPE
case 'Ito'
driftX = 1/2 * a^2 * x; % the Ito SDE drift
diffusionX = a * x; % the Ito SDE diffusion
derivativeX = a; % the diffusion derivative w.r.t. x
case 'Strat'
driftX = 0; % the Stratonovich SDE drift
diffusionX = a * x; % the Stratonovich SDE diffusion
derivativeX = a; % the diffusion derivative w.r.t. x
end
out1 = driftX; % fill with the drift value(s);
out2 = diffusionX; % fill with the diffusion value(s);
out3 = derivativeX; % fill with the first derivative(s) of the diffusion(s) term(s) with respect to the state variable(s);
% Example: if you have k dependent variables Y1,...,Yk and the system of SDEs
% dY = f(t,Y)dt + g(t,Y)dW, where dY is (k x 1), f is (k x 1), g is a
% DIAGONAL (k x m) matrix and W is (m x 1)
% then: out1 = [driftY1,...,driftYk];
% out2 = [diffusionY1,...,diffusionYk];
% out3 = [derivativeY1,...,derivativeYk];
% where derivativeYi is the partial derivative of the diffusion term for
% the ith equation with respect to the variable Yi (i=1,...,k).
%::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
%::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
%::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
% Now let MATLAB vectorize the output over the NUMSIM simulations, if
% necessary
if(length(out1)==NUMDEPVARS)
out1 = out1';
out1 = out1([1:size(out1,1)]' * ones(1,NUMSIM), :)'; % ugly but faster than out1 = repmat(out1,1,NUMSIM);
end
if(length(out2)==NUMDEPVARS)
out2 = out2';
out2 = out2([1:size(out2,1)]' * ones(1,NUMSIM), :)';
end
if(length(out3)==NUMDEPVARS)
out3 = out3';
out3 = out3([1:size(out3,1)]' * ones(1,NUMSIM), :)';
end
else
switch(flag)
case 'init'
out1 = t;
out2 = Xzero; % Write here SDE initial conditions
out3 = [];
otherwise
error(['Unknown flag ''' flag '''.']);
end
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -