⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 sedumi.m

📁 经济学专业代码
💻 M
📖 第 1 页 / 共 3 页
字号:
function [x,y,info] = sedumi(A,b,c,K,pars)
%                                          [x,y,info] = sedumi(A,b,c,K,pars)
%
% SEDUMI  Self-Dual-Minimization/ Optimization over self-dual homogeneous
%         cones.
%
% >  X = SEDUMI(A,b,c) yields an optimal solution to the linear program
%      MINIMIZE c'*x SUCH THAT A*x = b, x >= 0
%      x is a vector of decision variables.
%      If size(A,2)==length(b), then it solves the linear program
%      MINIMIZE c'*x SUCH THAT A'*x = b, x >= 0
%
% >  [X,Y,INFO] = SEDUMI(A,b,c) also yields a vector of dual multipliers Y,
%      and a structure INFO, with the fields INFO.pinf, INFO.dinf and
%      INFO.numerr.
%
%    (1) INFO.pinf=INFO.dinf=0: x is an optimal solution (as above)
%      and y certifies optimality, viz.\ b'*y = c'*x and c - A'*y >= 0.
%      Stated otherwise, y is an optimal solution to
%      MAXIMIZE b'*y SUCH THAT c-A'*y >= 0.
%      If size(A,2)==length(b), then y solves the linear program
%      MAXIMIZE b'*y SUCH THAT c-A*y >= 0.
%
%    (2) INFO.pinf=1: there cannot be x>=0 with A*x=b, and this is certified
%      by y, viz. b'*y > 0 and A'*y <= 0. Thus y is a Farkas solution.
%
%    (3) INFO.dinf=1: there cannot be y such that c-A'*y >= 0, and this is
%      certified by x, viz. c'*x <0, A*x = 0, x >= 0. Thus x is a Farkas
%      solution.
%
%    (I)   INFO.numerr = 0: desired accuracy achieved (see PARS.eps).
%    (II)  INFO.numerr = 1: numerical problems warning. Results are accurate
%          merely to the level of PARS.bigeps.
%    (III) INFO.numerr = 2: complete failure due to numerical problems.
%
%    INFO.feasratio is the final value of the feasibility indicator. This
%    indicator converges to 1 for problems with a complementary solution, and
%    to -1 for strongly infeasible problems. If feasratio in somewhere in
%    between, the problem may be nasty (e.g. the optimum is not attained),
%    if the problem is NOT purely linear (see below). Otherwise, the reason
%    must lie in numerical problems: try to rescale the problem.
%
% >  [X,Y,INFO] = SEDUMI(A,b,0) or SEDUMI(A,b) solves the feasibility problem
%    FIND x>=0 such that A*x = b
%
% >  [X,Y,INFO] = SEDUMI(A,0,c) or SEDUMI(A,c) solves the feasibility problem
%    FIND y such that A'*y <= c
%
% >  [X,Y,INFO] = SEDUMI(A,b,c,K) instead of the constraint "x>=0", this
%      restricts x to a self-dual homogeneous cone that you describe in the
%      structure K. Up to 5 fields can be used, called K.f, K.l, K.q, K.r and
%      K.s, for Free, Linear, Quadratic, Rotated quadratic and Semi-definite.
%      In addition, there are fields K.xcomplex, K.scomplex and K.ycomplex
%      for complex-variables.
%
%    (1) K.f is the number of FREE, i.e. UNRESTRICTED primal components.
%      The dual components are restricted to be zero. E.g. if
%      K.f = 2 then x(1:2) is unrestricted, and z(1:2)=0.
%      These are ALWAYS the first components in x.
%
%    (2) K.l is the number of NONNEGATIVE components. E.g. if K.f=2, K.l=8
%      then x(3:10) >=0.
%
%    (3) K.q lists the dimensions of LORENTZ (quadratic, second-order cone)
%      constraints. E.g. if K.l=10 and K.q = [3 7] then
%          x(11) >= norm(x(12:13)),
%          x(14) >= norm(x(15:20)).
%      These components ALWAYS immediately follow the K.l nonnegative ones.
%      If the entries in A and/or c are COMPLEX, then the x-components in
%      "norm(x(#,#))" take complex-values, whenever that is beneficial.
%       Use K.ycomplex to impose constraints on the imaginary part of A*x.
%
%    (4) K.r lists the dimensions of Rotated LORENTZ
%      constraints. E.g. if K.l=10, K.q = [3 7] and K.r = [4 6], then
%          2*x(21)x(22) >= norm(x(23:24))^2,
%          2*x(25)x(26) >= norm(x(27:30))^2.
%      These components ALWAYS immediately follow the K.q ones.
%      Just as for the K.q-variables, the variables in "norm(x(#,#))" are
%      allowed to be complex, if you provide complex data. Use K.ycomplex
%      to impose constraints on the imaginary part of A*x.
%
%    (5) K.s lists the dimensions of POSITIVE SEMI-DEFINITE (PSD) constraints
%      E.g. if K.l=10, K.q = [3 7] and K.s = [4 3], then
%          mat( x(21:36),4 ) is PSD,
%          mat( x(37:45),3 ) is PSD.
%      These components are ALWAYS the last entries in x.
%
%    (a) K.xcomplex lists the components in f,l,q,r blocks that are allowed
%     to have nonzero imaginary part in the primal. For f,l blocks, these
%    (b) K.scomplex lists the PSD blocks that are Hermitian rather than
%      real symmetric.
%    (c) Use K.ycomplex to impose constraints on the imaginary part of A*x.
%
%    The dual multipliers y have analogous meaning as in the "x>=0" case,
%    except that instead of "c-A'*y>=0" resp. "-A'*y>=0", one should read that
%    c-A'*y resp. -A'*y are in the cone that is described by K.l, K.q and K.s.
%    In the above example, if z = c-A'*y and mat(z(21:36),4) is not symmetric/
%    Hermitian, then positive semi-definiteness reflects the symmetric/
%    Hermitian parts, i.e. Z + Z' is PSD.
%
%    If the model contains COMPLEX data, then you may provide a list
%    K.ycomplex, with the following meaning:
%      y(i) is complex if ismember(i,K.ycomplex)
%      y(i) is real otherwise
%    The equality constraints in the primal are then as follows:
%          A(i,:)*x = b(i)      if imag(b(i)) ~= 0 or ismember(i,K.ycomplex)
%          real(A(i,:)*x) = b(i)  otherwise.
%    Thus, equality constraints on both the real and imaginary part
%    of A(i,:)*x should be listed in the field K.ycomplex.
%
%    You may use EIGK(x,K) and EIGK(c-A'*y,K) to check that x and c-A'*y
%    are in the cone K.
%
% >  [X,Y,INFO] = SEDUMI(A,b,c,K,pars) allows you to override the default
%      parameter settings, using fields in the structure `pars'.
%
%    (1) pars.fid     By default, fid=1. If fid=0, then SeDuMi runs quietly,
%      i.e. no screen output. In general, output is written to a device or
%      file whose handle is fid. Use fopen to assign a fid to a file.
%
%    (2) pars.alg     By default, alg=2. If alg=0, then a first-order wide
%      region algorithm is used, not recommended. If alg=1, then SeDuMi uses
%      the centering-predictor-corrector algorithm with v-linearization.
%      If alg=2, then xz-linearization is used in the corrector, similar
%      to Mehrotra's algorithm. The wide-region centering-predictor-corrector
%      algorithm was proposed in Chapter 7 of
%        J.F. Sturm, Primal-Dual Interior Point Approach to Semidefinite Pro-
%        gramming, TIR 156, Thesis Publishers Amsterdam, 1997.
%
%    (3) pars.theta, pars.beta   By default, theta=0.25 and beta=0.5. These
%      are the wide region and neighborhood parameters. Valid choices are
%      0 < theta <= 1 and 0 < beta < 1. Setting theta=1 restricts the iterates
%      to follow the central path in an N_2(beta)-neighborhood.
%
%    (4) pars.stepdif, pars.w. By default, stepdif = 2 and w=[1 1]. 
%       This implements an adaptive heuristic to control ste-differentiation.
%       You can enable primal/dual step length differentiation by setting stepdif=1 or 0.
%      If so, it weights the rel. primal, dual and gap residuals as
%      w(1):w(2):1 in order to find the optimal step differentiation.
%
%    (5) pars.eps     The desired accuracy. Setting pars.eps=0 lets SeDuMi run
%      as long as it can make progress. By default eps=1e-8.
%
%    (6) pars.bigeps  In case the desired accuracy pars.eps cannot be achieved,
%     the solution is tagged as info.numerr=1 if it is accurate to pars.bigeps,
%     otherwise it yields info.numerr=2.
%
%    (7) pars.maxiter Maximum number of iterations, before termination.
%
%    (8) pars.stopat  SeDuMi enters debugging mode at the iterations specified in this vector.
%
%    (9) pars.cg      Various parameters for controling the Preconditioned conjugate
%     gradient method (CG), which is only used if results from Cholesky are inaccurate.
%    (a) cg.maxiter   Maximum number of CG-iterates (per solve). Theoretically needed
%          is |add|+2*|skip|, the number of added and skipped pivots in Cholesky.
%          (Default 49.)
%    (b) cg.restol    Terminates if residual is a "cg.restol" fraction of duality gap.
%          Should be smaller than 1 in order to make progress (default 5E-3).
%    (c) cg.refine    Number of refinement loops that are allowed. The maximum number
%          of actual CG-steps will thus be 1+(1+cg.refine)*cg.maxiter. (default 1)
%    (d) cg.stagtol  Terminates if relative function progress less than stagtol (5E-14).
%    (e) cg.qprec    Stores cg-iterates in quadruple precision if qprec=1 (default 0).
%
%    (10) pars.chol   Various parameters for controling the Cholesky solve.
%     Subfields of the structure pars.chol are:
%    (a) chol.canceltol: Rel. tolerance for detecting cancelation during Cholesky (1E-12)
%    (b) chol.maxu:   Adds to diagonal if max(abs(L(:,j))) > chol.maxu otherwise (5E5).
%    (c) chol.abstol: Skips pivots falling below abstol (1e-20).
%    (d) chol.maxuden: pivots in dense-column factorization so that these factors
%      satisfy max(abs(Lk)) <= maxuden (default 5E2).
%
%    (11) pars.vplot  If this field is 1, then SeDuMi produces a fancy
%      v-plot, for research purposes. Default: vplot = 0.
% 
%    (12) pars.errors  If this field is 1 then SeDuMi outputs some error
%    measures as defined in the Seventh DIMACS Challenge. For more details
%    see the User Guide.
%
% Bug reports can be submitted at http://sedumi.mcmaster.ca.
%
% See also mat, vec, cellK, eyeK, eigK

% This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko
% Copyright (C) 2006 McMaster University, Hamilton, CANADA  (since 1.1)
%
% Copyright (C) 2001 Jos F. Sturm (up to 1.05R5)
%   Dept. Econometrics & O.R., Tilburg University, the Netherlands.
%   Supported by the Netherlands Organization for Scientific Research (NWO).
%
% Affiliation SeDuMi 1.03 and 1.04Beta (2000):
%   Dept. Quantitative Economics, Maastricht University, the Netherlands.
%
% Affiliations up to SeDuMi 1.02 (AUG1998):
%   CRL, McMaster University, Canada.
%   Supported by the Netherlands Organization for Scientific Research (NWO).
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc.,  51 Franklin Street, Fifth Floor, Boston, MA
% 02110-1301, USA

% J.F. Sturm, "Using SeDuMi 1.02, a MATLAB toolbox for optimization over
% symmetric cones," Optimization Methods and Software 11-12 (1999) 625-653.
% http://sedumi.mcmaster.ca

cputime0=cputime;
% ************************************************************
% INITIALIZATION
% ************************************************************
% ----------------------------------------
% Check input
% ----------------------------------------
if (nargin < 5)
    pars.fid = 1;
    if nargin < 3
        if nargin < 2
            error('Should have at least (A,b) or (A,c) arguments')
        end
        if length(b) == max(size(A))
            c = b; b = 0;           % given (A,c): LP feasibility problem
        else
            c = 0;                  % given (A,b): LP feasibility problem
        end
    end
    if isstruct(c)
        if nargin == 4
            pars = K;      % given (A,b,K,pars) or (A,c,K,pars)
        end
        K = c;          % given (A,b,K) or (A,c,K): cone feasibility problem
        if length(b) == max(size(A))
            c = b; b = 0;
        else
            c = 0;
        end
    elseif nargin < 4
        K.l = max(size(A));    % given (A,b,c): default to LP problem.

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -