📄 qscalek.c
字号:
/*
y = qscaleK(d,rdetd,x,K)
Computes y = D(d) x with d in K, Lorentz part.
% This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko
% Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1)
%
% Copyright (C) 2001 Jos F. Sturm (up to 1.05R5)
% Dept. Econometrics & O.R., Tilburg University, the Netherlands.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% Affiliation SeDuMi 1.03 and 1.04Beta (2000):
% Dept. Quantitative Economics, Maastricht University, the Netherlands.
%
% Affiliations up to SeDuMi 1.02 (AUG1998):
% CRL, McMaster University, Canada.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
% 02110-1301, USA
*/
#include "mex.h"
#include "triuaux.h"
#include "blksdp.h"
/* y = scaleK(d,ud,x,K) */
#define Y_OUT plhs[0]
#define NPAROUT 1
#define D_IN prhs[0]
#define RDETD_IN prhs[1]
#define X_IN prhs[2]
#define K_IN prhs[3]
#define NPARIN 4
/* ============================================================
LORENTZ OPERATIONS
============================================================ */
/* ************************************************************
PROCEDURE qscale : LORENTZ SCALE D(x)y = z + mu * x (full version)
mu = (y1+alpha)/sqrt(2), z = rdetx * [alpha; y(2:n)],
where alpha = (x(2:n)'*y(2:n)) / (x(1)+ sqrt(2) * rdetx)
INPUT
x,y - full n x 1
rdetx - sqrt(det(x))
n - order of x,y,z.
OUTPUT
z - full n x 1. Let z := rdetx * [alpha; y(2:n)].
RETURNS
mu = (y1+alpha)/sqrt(2).
************************************************************ */
double qscale(double *z,const double *x,const double *y,
const double rdetx,const int n)
{
double alpha, mu;
/* ------------------------------------------------------------
alpha = (x(2:n)'*y(2:n)) / (x(1)+ sqrt(2) * rdetx)
------------------------------------------------------------ */
alpha = realdot(x+1,y+1,n-1) / (x[0] + M_SQRT2 * rdetx);
/* ------------------------------------------------------------
z = rdetx * [alpha; y(2:n)].
------------------------------------------------------------ */
z[0] = rdetx * alpha;
scalarmul(z+1,rdetx,y+1,n-1);
/* ------------------------------------------------------------
RETURN mu = (y1+alpha)/sqrt(2).
------------------------------------------------------------ */
return (y[0] + alpha) / M_SQRT2;
}
/* ************************************************************
PROCEDURE qlmul : LORENTZ SCALE z = D(x)y (full version)
z=D(x)y = [x'*y / sqrt(2); mu * x(2:n) + rdetx * y(2:n)],
where mu = (z(1)+rdetx*y1) / (x(1)+ sqrt(2) * rdetx)
INPUT
x,y - full n x 1
rdetx - sqrt(det(x))
n - order of x,y,z.
OUTPUT
z - full n x 1. Let z := D(x)y.
************************************************************ */
void qlmul(double *z,const double *x,const double *y,
const double rdetx,const int n)
{
double mu;
mu = qscale(z, x,y,rdetx,n);
addscalarmul(z,mu,x,n);
}
/* ============================================================
MAIN: MEXFUNCTION
============================================================ */
/* ************************************************************
PROCEDURE mexFunction - Entry for Matlab
************************************************************ */
void mexFunction(const int nlhs, mxArray *plhs[],
const int nrhs, const mxArray *prhs[])
{
int i,k, nk;
double *y;
const double *d,*rdetd,*x;
coneK cK;
/* ------------------------------------------------------------
Check for proper number of arguments
------------------------------------------------------------ */
mxAssert(nrhs >= NPARIN, "qscaleK requires more input arguments.");
mxAssert(nlhs <= NPAROUT, "qscaleK generates 1 output argument.");
/* ------------------------------------------------------------
Disassemble cone K structure
------------------------------------------------------------ */
conepars(K_IN, &cK);
/* ------------------------------------------------------------
Get scale data: (d,rdetd) and input x.
------------------------------------------------------------ */
mxAssert(mxGetM(D_IN) * mxGetN(D_IN) >= cK.lpN + cK.qDim, "d size mismatch");
d = mxGetPr(D_IN) + cK.lpN; /* skip LP part */
mxAssert(mxGetM(RDETD_IN) * mxGetN(RDETD_IN) == cK.lorN, "rdetx size mismatch");
rdetd = mxGetPr(RDETD_IN);
mxAssert(mxGetM(X_IN) * mxGetN(X_IN) == cK.qDim, "x size mismatch");
x = mxGetPr(X_IN);
/* ------------------------------------------------------------
Allocate output Y
------------------------------------------------------------ */
Y_OUT = mxCreateDoubleMatrix(cK.qDim, 1, mxREAL);
y = mxGetPr(Y_OUT);
/* ------------------------------------------------------------
The actual job is done here: y=D(d)x, Lorentz part.
------------------------------------------------------------ */
for(k = 0; k < cK.lorN; k++){ /* LORENTZ */
nk = cK.lorNL[k];
qlmul(y, d,x,rdetd[k],nk);
y += nk; x += nk; d += nk;
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -