📄 psdjmul.c
字号:
/*
% y = psdmul(x,y, K)
% PSDMUL for full x,y. Computes (XY+YX)/2
%
% SEE ALSO sedumi
% ********** INTERNAL FUNCTION OF SEDUMI **********
function y = psdmul(x,y, K)
% This file is part of SeDuMi 1.1 by Imre Polik and Oleksandr Romanko
% Copyright (C) 2005 McMaster University, Hamilton, CANADA (since 1.1)
%
% Copyright (C) 2001 Jos F. Sturm (up to 1.05R5)
% Dept. Econometrics & O.R., Tilburg University, the Netherlands.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% Affiliation SeDuMi 1.03 and 1.04Beta (2000):
% Dept. Quantitative Economics, Maastricht University, the Netherlands.
%
% Affiliations up to SeDuMi 1.02 (AUG1998):
% CRL, McMaster University, Canada.
% Supported by the Netherlands Organization for Scientific Research (NWO).
%
% This program is free software; you can redistribute it and/or modify
% it under the terms of the GNU General Public License as published by
% the Free Software Foundation; either version 2 of the License, or
% (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
% 02110-1301, USA
*/
#include "mex.h"
#include "blksdp.h"
#define Z_OUT plhs[0]
#define NPAROUT 1
#define X_IN prhs[0]
#define Y_IN prhs[1]
#define K_IN prhs[2]
#define NPARIN 3
/* ============================================================
PSD: Z = tril(X*Y+Y*X)/2
============================================================ */
/* ************************************************************
PROCEDURE symjmul(z,x,y,n) --
Z = tril(X * Y + Y * X) / 2, with X,Y symmetric.
The strict upper triangular of Z is undefined.
INPUT
x,y - symmetric n x n
n - order of square x,y,z matrices
UPDATED
z - full n x n, on entry arbitrary, on return tril(Z) = tril(XY+YX)/2.
************************************************************ */
void symjmul(double *z,const double *x,const double *y,const int n)
{
int i,j,icol;
/* ------------------------------------------------------------
For i=0..n-1:
for j=i..n-1: let z(j,i) = (x(:,i)'*y(:,j) + y(:,i)'*x(:,j))/2
------------------------------------------------------------ */
for(j = 0; j < n; z += n, x+=n, y+=n, j++){
z[j] = realdot(x,y,n);
for(i = j+1, icol = n; i < n; icol+=n, i++)
z[i] = (realdot(x+icol,y,n) + realdot(x,y+icol,n)) / 2;
}
}
/* ************************************************************
PROCEDURES hermjmul --
Z = tril(X * Y + Y * X) / 2, with X,Y Hermitian. X = [RE X,IM X].
Only stict lower triangular and real diagonal of R are defined.
INPUT
x,y - Hermitian; full 2*(n x n).
n - order of square x,y,z matrices
UPDATED
z - full 2*(n x n), on entry arbitrary, on return
tril(Z) = tril(XY + YX)/2.
************************************************************ */
void hermjmul(double *z,const double *x,const double *y,const int n)
{
int i,j,icol,jcol,nsqr;
const double *xpi,*ypi;
nsqr = SQR(n);
xpi = x + nsqr; ypi = y + nsqr;
/* ------------------------------------------------------------
For i=0..n-1:
for j=i..n-1: let z(j,i) = (x(:,i)'*y(:,j) + y(:,i)'*x(:,j))/2
------------------------------------------------------------ */
for(j = 0, jcol=0; j < n; z += n, jcol+=n, j++){
z[j] = realdot(x+jcol,y+jcol,n) + realdot(xpi+jcol,ypi+jcol,n);
for(i = j+1, icol = jcol; i < n; i++){
icol += n;
z[i] = (realdot(x+icol,y+jcol,n) + realdot(x+jcol,y+icol,n)
+ realdot(xpi+icol,ypi+jcol,n) + realdot(xpi+jcol,ypi+icol,n)) / 2;
}
}
for(j = 0, jcol=0; j < n; z += n, jcol+=n, j++){
for(i = j+1, icol = jcol; i < n; i++){
icol += n;
z[i] = (realdot(x+icol,ypi+jcol,n)
- realdot(xpi+icol,y+jcol,n)
- realdot(x+jcol,ypi+icol,n)
+ realdot(xpi+jcol,y+icol,n)) / 2;
}
}
}
/* ============================================================
MAIN: MEXFUNCTION
============================================================ */
/* ************************************************************
PROCEDURE mexFunction - Entry for Matlab
z = psdjmul(x,y, K)
************************************************************ */
void mexFunction(const int nlhs, mxArray *plhs[],
const int nrhs, const mxArray *prhs[])
{
int k, nk, nksqr, lenfull, ifirst, lenud;
double *z;
const double *x,*y;
coneK cK;
/* ------------------------------------------------------------
Check for proper number of arguments
------------------------------------------------------------ */
mxAssert(nrhs >= NPARIN, "jmulK requires more input arguments.");
mxAssert(nlhs <= NPAROUT, "jmulK generates 1 output argument.");
/* ------------------------------------------------------------
Disassemble cone K structure
------------------------------------------------------------ */
conepars(K_IN, &cK);
/* ------------------------------------------------------------
Get statistics of cone K structure
------------------------------------------------------------ */
ifirst = cK.lpN + cK.qDim; /* point to PSD */
lenud = cK.rDim + cK.hDim;
lenfull = ifirst + lenud;
/* ------------------------------------------------------------
Get inputs x and y.
------------------------------------------------------------ */
x = mxGetPr(X_IN) + ifirst;
y = mxGetPr(Y_IN) + ifirst;
mxAssert(!mxIsSparse(X_IN) && !mxIsSparse(Y_IN), "Sparse inputs not supported by this version of jmulK.");
mxAssert(mxGetM(X_IN) * mxGetN(X_IN) == lenfull, "size x mismatch.");
mxAssert(mxGetM(Y_IN) * mxGetN(Y_IN) == lenfull, "size y mismatch.");
/* ------------------------------------------------------------
Allocate output Z
------------------------------------------------------------ */
Z_OUT = mxCreateDoubleMatrix(lenud, 1, mxREAL);
z = mxGetPr(Z_OUT);
/* ------------------------------------------------------------
The actual job is done here: Z = (XY + YX)/2
------------------------------------------------------------ */
for(k=0; k < cK.rsdpN; k++){ /* real symmetric */
nk = cK.sdpNL[k]; /* real to int */
symjmul(z,x,y,nk);
tril2sym(z,nk);
nksqr = SQR(nk);
z += nksqr; x += nksqr;
y += nksqr;
}
for(; k < cK.sdpN; k++){ /* complex Hermitian */
nk = cK.sdpNL[k]; /* real to int */
nksqr = SQR(nk);
hermjmul(z,x,y,nk);
tril2herm(z,z+nksqr,nk);
nksqr += nksqr;
z += nksqr; x += nksqr;
y += nksqr;
}
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -