📄 s_stresscorrelation.m
字号:
% this script evaluates the ML estimator of location and scatter under the
% multivariate normal assumption by computing replicability, loss, error, bias and inefficiency
% over a stress-test set of correlation values
% see "Risk and Asset Allocation"- Springer (2005), by A. Meucci
clear; close all; clc;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
N=5; % number of joint variables
T=20; % number of observations in time series
Mu=ones(N,1); % true location parameter
sig=ones(N,1); % true dispersions
Min_Theta=0; Max_Theta=.9; Steps=7; % stress-test the overall correlation of the normal market
NumSimulations=2000; %test replicability numerically
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% stress test replicability
Step=(Max_Theta-Min_Theta)/(Steps-1);
Thetas=[Min_Theta : Step : Max_Theta];
Stress_Loss_Mu=[]; Stress_Inef2_Mu=[]; Stress_Bias2_Mu=[]; Stress_Error2_Mu=[];
Stress_Loss_Sigma=[]; Stress_Inef2_Sigma=[]; Stress_Bias2_Sigma=[]; Stress_Error2_Sigma=[];
for i=1:Steps % each cycle represents a different stress-test scenario
CyclesToGo=Steps-i+1
Theta=Thetas(i);
C=(1-Theta)*eye(N)+Theta*ones(N,N);
Sigma= diag(sig)*C*diag(sig);
Mu_hats=[]; Sigma_hats=[];
l=ones(NumSimulations,1);
for n=1:NumSimulations % each cycle represents a simulation under a given stress-test scenario
X=mvnrnd(Mu,Sigma,T);
[Mu_hat,Sigma_hat]=NormalMLE(X);
Mu_hats=[Mu_hats
Mu_hat(1:end)'];
Sigma_hats=[Sigma_hats
Sigma_hat(1:end)];
end
% loss for Mu (numerical)
Loss_Mu = sum( (Mu_hats-l*Mu').^2 ,2);
% square inefficiency for Mu
Inef2_Mu = 1/T*trace(Sigma); % analytical
%Inef2_Mu = std(Mu_hats,1)*std(Mu_hats,1)'; % numerical
% square bias for Mu
Bias2_Mu = 0; % analytical
%Bias2_Mu = sum( (mean(Mu_hats)'-Mu).^2 ); % numerical
% square error for Mu
Error2_Mu=1/T*trace(Sigma); % analytical
%Error2_Mu=mean(Loss_Mu); % numerical
% loss for Sigma (numerical)
Loss_Sigma = sum( (Sigma_hats-l*Sigma(1:end)).^2 ,2);
% square inefficiency for Sigma
Inef2_Sigma = 1/T*(1-1/T)*( trace(Sigma^2)+ trace(Sigma)^2 ); % analytical
%Inef2_Sigma = std(Sigma_hats)*std(Sigma_hats)'; % numerical
% square bias for Sigma
Bias2_Sigma = trace(Sigma^2)/(T^2); % analytical
%Bias2_Sigma = sum( (mean(Sigma_hats)-Sigma(1:end)).^2 ); % numerical
% square error for Sigma
Error2_Sigma=1/T*(trace(Sigma*Sigma) + (1-1/T)*(trace(Sigma))^2 ); % analytical
%Error2_Sigma=mean(Loss_Sigma); % numerical
% store stress test results
Stress_Loss_Mu=[Stress_Loss_Mu Loss_Mu];
Stress_Inef2_Mu=[Stress_Inef2_Mu Inef2_Mu];
Stress_Bias2_Mu=[Stress_Bias2_Mu Bias2_Mu];
Stress_Error2_Mu=[Stress_Error2_Mu Error2_Mu];
Stress_Loss_Sigma=[Stress_Loss_Sigma Loss_Sigma];
Stress_Inef2_Sigma=[Stress_Inef2_Sigma Inef2_Sigma];
Stress_Bias2_Sigma=[Stress_Bias2_Sigma Bias2_Sigma];
Stress_Error2_Sigma=[Stress_Error2_Sigma Error2_Sigma];
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% plots
h=PlotEstimatorStressTest(Stress_Loss_Mu,Stress_Inef2_Mu,Stress_Bias2_Mu,...
Stress_Error2_Mu,Thetas,'Correlation','Mu');
h=PlotEstimatorStressTest(Stress_Loss_Sigma,Stress_Inef2_Sigma,Stress_Bias2_Sigma,...
Stress_Error2_Sigma,Thetas,'Correlation','Sigma');
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -