📄 fsys.s
字号:
/* * This file contains the light-weight system call handlers (fsyscall-handlers). * * Copyright (C) 2003 Hewlett-Packard Co * David Mosberger-Tang <davidm@hpl.hp.com> * * 25-Sep-03 davidm Implement fsys_rt_sigprocmask(). * 18-Feb-03 louisk Implement fsys_gettimeofday(). * 28-Feb-03 davidm Fixed several bugs in fsys_gettimeofday(). Tuned it some more, * probably broke it along the way... ;-) * 13-Jul-04 clameter Implement fsys_clock_gettime and revise fsys_gettimeofday to make * it capable of using memory based clocks without falling back to C code. */#include <asm/asmmacro.h>#include <asm/errno.h>#include <asm/asm-offsets.h>#include <asm/percpu.h>#include <asm/thread_info.h>#include <asm/sal.h>#include <asm/signal.h>#include <asm/system.h>#include <asm/unistd.h>#include "entry.h"/* * See Documentation/ia64/fsys.txt for details on fsyscalls. * * On entry to an fsyscall handler: * r10 = 0 (i.e., defaults to "successful syscall return") * r11 = saved ar.pfs (a user-level value) * r15 = system call number * r16 = "current" task pointer (in normal kernel-mode, this is in r13) * r32-r39 = system call arguments * b6 = return address (a user-level value) * ar.pfs = previous frame-state (a user-level value) * PSR.be = cleared to zero (i.e., little-endian byte order is in effect) * all other registers may contain values passed in from user-mode * * On return from an fsyscall handler: * r11 = saved ar.pfs (as passed into the fsyscall handler) * r15 = system call number (as passed into the fsyscall handler) * r32-r39 = system call arguments (as passed into the fsyscall handler) * b6 = return address (as passed into the fsyscall handler) * ar.pfs = previous frame-state (as passed into the fsyscall handler) */ENTRY(fsys_ni_syscall) .prologue .altrp b6 .body mov r8=ENOSYS mov r10=-1 FSYS_RETURNEND(fsys_ni_syscall)ENTRY(fsys_getpid) .prologue .altrp b6 .body add r9=TI_FLAGS+IA64_TASK_SIZE,r16 ;; ld4 r9=[r9] add r8=IA64_TASK_TGID_OFFSET,r16 ;; and r9=TIF_ALLWORK_MASK,r9 ld4 r8=[r8] // r8 = current->tgid ;; cmp.ne p8,p0=0,r9(p8) br.spnt.many fsys_fallback_syscall FSYS_RETURNEND(fsys_getpid)ENTRY(fsys_getppid) .prologue .altrp b6 .body add r17=IA64_TASK_GROUP_LEADER_OFFSET,r16 ;; ld8 r17=[r17] // r17 = current->group_leader add r9=TI_FLAGS+IA64_TASK_SIZE,r16 ;; ld4 r9=[r9] add r17=IA64_TASK_REAL_PARENT_OFFSET,r17 // r17 = ¤t->group_leader->real_parent ;; and r9=TIF_ALLWORK_MASK,r91: ld8 r18=[r17] // r18 = current->group_leader->real_parent ;; cmp.ne p8,p0=0,r9 add r8=IA64_TASK_TGID_OFFSET,r18 // r8 = ¤t->group_leader->real_parent->tgid ;; /* * The .acq is needed to ensure that the read of tgid has returned its data before * we re-check "real_parent". */ ld4.acq r8=[r8] // r8 = current->group_leader->real_parent->tgid#ifdef CONFIG_SMP /* * Re-read current->group_leader->real_parent. */ ld8 r19=[r17] // r19 = current->group_leader->real_parent(p8) br.spnt.many fsys_fallback_syscall ;; cmp.ne p6,p0=r18,r19 // did real_parent change? mov r19=0 // i must not leak kernel bits...(p6) br.cond.spnt.few 1b // yes -> redo the read of tgid and the check ;; mov r17=0 // i must not leak kernel bits... mov r18=0 // i must not leak kernel bits...#else mov r17=0 // i must not leak kernel bits... mov r18=0 // i must not leak kernel bits... mov r19=0 // i must not leak kernel bits...#endif FSYS_RETURNEND(fsys_getppid)ENTRY(fsys_set_tid_address) .prologue .altrp b6 .body add r9=TI_FLAGS+IA64_TASK_SIZE,r16 ;; ld4 r9=[r9] tnat.z p6,p7=r32 // check argument register for being NaT ;; and r9=TIF_ALLWORK_MASK,r9 add r8=IA64_TASK_PID_OFFSET,r16 add r18=IA64_TASK_CLEAR_CHILD_TID_OFFSET,r16 ;; ld4 r8=[r8] cmp.ne p8,p0=0,r9 mov r17=-1 ;;(p6) st8 [r18]=r32(p7) st8 [r18]=r17(p8) br.spnt.many fsys_fallback_syscall ;; mov r17=0 // i must not leak kernel bits... mov r18=0 // i must not leak kernel bits... FSYS_RETURNEND(fsys_set_tid_address)/* * Ensure that the time interpolator structure is compatible with the asm code */#if IA64_TIME_INTERPOLATOR_SOURCE_OFFSET !=0 || IA64_TIME_INTERPOLATOR_SHIFT_OFFSET != 2 \ || IA64_TIME_INTERPOLATOR_JITTER_OFFSET != 3 || IA64_TIME_INTERPOLATOR_NSEC_OFFSET != 4#error fsys_gettimeofday incompatible with changes to struct time_interpolator#endif#define CLOCK_REALTIME 0#define CLOCK_MONOTONIC 1#define CLOCK_DIVIDE_BY_1000 0x4000#define CLOCK_ADD_MONOTONIC 0x8000ENTRY(fsys_gettimeofday) .prologue .altrp b6 .body mov r31 = r32 tnat.nz p6,p0 = r33 // guard against NaT argument(p6) br.cond.spnt.few .fail_einval mov r30 = CLOCK_DIVIDE_BY_1000 ;;.gettime: // Register map // Incoming r31 = pointer to address where to place result // r30 = flags determining how time is processed // r2,r3 = temp r4-r7 preserved // r8 = result nanoseconds // r9 = result seconds // r10 = temporary storage for clock difference // r11 = preserved: saved ar.pfs // r12 = preserved: memory stack // r13 = preserved: thread pointer // r14 = address of mask / mask // r15 = preserved: system call number // r16 = preserved: current task pointer // r17 = wall to monotonic use // r18 = time_interpolator->offset // r19 = address of wall_to_monotonic // r20 = pointer to struct time_interpolator / pointer to time_interpolator->address // r21 = shift factor // r22 = address of time interpolator->last_counter // r23 = address of time_interpolator->last_cycle // r24 = adress of time_interpolator->offset // r25 = last_cycle value // r26 = last_counter value // r27 = pointer to xtime // r28 = sequence number at the beginning of critcal section // r29 = address of seqlock // r30 = time processing flags / memory address // r31 = pointer to result // Predicates // p6,p7 short term use // p8 = timesource ar.itc // p9 = timesource mmio64 // p10 = timesource mmio32 // p11 = timesource not to be handled by asm code // p12 = memory time source ( = p9 | p10) // p13 = do cmpxchg with time_interpolator_last_cycle // p14 = Divide by 1000 // p15 = Add monotonic // // Note that instructions are optimized for McKinley. McKinley can process two // bundles simultaneously and therefore we continuously try to feed the CPU // two bundles and then a stop. tnat.nz p6,p0 = r31 // branch deferred since it does not fit into bundle structure mov pr = r30,0xc000 // Set predicates according to function add r2 = TI_FLAGS+IA64_TASK_SIZE,r16 movl r20 = time_interpolator ;; ld8 r20 = [r20] // get pointer to time_interpolator structure movl r29 = xtime_lock ld4 r2 = [r2] // process work pending flags movl r27 = xtime ;; // only one bundle here ld8 r21 = [r20] // first quad with control information and r2 = TIF_ALLWORK_MASK,r2(p6) br.cond.spnt.few .fail_einval // deferred branch ;; add r10 = IA64_TIME_INTERPOLATOR_ADDRESS_OFFSET,r20 extr r3 = r21,32,32 // time_interpolator->nsec_per_cyc extr r8 = r21,0,16 // time_interpolator->source cmp.ne p6, p0 = 0, r2 // Fallback if work is scheduled(p6) br.cond.spnt.many fsys_fallback_syscall ;; cmp.eq p8,p12 = 0,r8 // Check for cpu timer cmp.eq p9,p0 = 1,r8 // MMIO64 ? extr r2 = r21,24,8 // time_interpolator->jitter cmp.eq p10,p0 = 2,r8 // MMIO32 ? cmp.ltu p11,p0 = 2,r8 // function or other clock(p11) br.cond.spnt.many fsys_fallback_syscall ;; setf.sig f7 = r3 // Setup for scaling of counter(p15) movl r19 = wall_to_monotonic(p12) ld8 r30 = [r10] cmp.ne p13,p0 = r2,r0 // need jitter compensation? extr r21 = r21,16,8 // shift factor ;;.time_redo: .pred.rel.mutex p8,p9,p10 ld4.acq r28 = [r29] // xtime_lock.sequence. Must come first for locking purposes(p8) mov r2 = ar.itc // CPU_TIMER. 36 clocks latency!!! add r22 = IA64_TIME_INTERPOLATOR_LAST_COUNTER_OFFSET,r20(p9) ld8 r2 = [r30] // readq(ti->address). Could also have latency issues..(p10) ld4 r2 = [r30] // readw(ti->address)(p13) add r23 = IA64_TIME_INTERPOLATOR_LAST_CYCLE_OFFSET,r20 ;; // could be removed by moving the last add upward ld8 r26 = [r22] // time_interpolator->last_counter(p13) ld8 r25 = [r23] // time interpolator->last_cycle add r24 = IA64_TIME_INTERPOLATOR_OFFSET_OFFSET,r20(p15) ld8 r17 = [r19],IA64_TIMESPEC_TV_NSEC_OFFSET ld8 r9 = [r27],IA64_TIMESPEC_TV_NSEC_OFFSET add r14 = IA64_TIME_INTERPOLATOR_MASK_OFFSET, r20 ;; ld8 r18 = [r24] // time_interpolator->offset ld8 r8 = [r27],-IA64_TIMESPEC_TV_NSEC_OFFSET // xtime.tv_nsec(p13) sub r3 = r25,r2 // Diff needed before comparison (thanks davidm) ;; ld8 r14 = [r14] // time_interpolator->mask(p13) cmp.gt.unc p6,p7 = r3,r0 // check if it is less than last. p6,p7 cleared sub r10 = r2,r26 // current_counter - last_counter ;;(p6) sub r10 = r25,r26 // time we got was less than last_cycle(p7) mov ar.ccv = r25 // more than last_cycle. Prep for cmpxchg ;; and r10 = r10,r14 // Apply mask ;; setf.sig f8 = r10 nop.i 123 ;;(p7) cmpxchg8.rel r3 = [r23],r2,ar.ccvEX(.fail_efault, probe.w.fault r31, 3) // This takes 5 cycles and we have spare time xmpy.l f8 = f8,f7 // nsec_per_cyc*(counter-last_counter)(p15) add r9 = r9,r17 // Add wall to monotonic.secs to result secs ;;(p15) ld8 r17 = [r19],-IA64_TIMESPEC_TV_NSEC_OFFSET(p7) cmp.ne p7,p0 = r25,r3 // if cmpxchg not successful redo // simulate tbit.nz.or p7,p0 = r28,0 and r28 = ~1,r28 // Make sequence even to force retry if odd getf.sig r2 = f8 mf add r8 = r8,r18 // Add time interpolator offset ;; ld4 r10 = [r29] // xtime_lock.sequence(p15) add r8 = r8, r17 // Add monotonic.nsecs to nsecs shr.u r2 = r2,r21 ;; // overloaded 3 bundles! // End critical section. add r8 = r8,r2 // Add xtime.nsecs cmp4.ne.or p7,p0 = r28,r10(p7) br.cond.dpnt.few .time_redo // sequence number changed ? // Now r8=tv->tv_nsec and r9=tv->tv_sec mov r10 = r0 movl r2 = 1000000000 add r23 = IA64_TIMESPEC_TV_NSEC_OFFSET, r31(p14) movl r3 = 2361183241434822607 // Prep for / 1000 hack ;;.time_normalize: mov r21 = r8 cmp.ge p6,p0 = r8,r2(p14) shr.u r20 = r8, 3 // We can repeat this if necessary just wasting some time ;;(p14) setf.sig f8 = r20(p6) sub r8 = r8,r2(p6) add r9 = 1,r9 // two nops before the branch.(p14) setf.sig f7 = r3 // Chances for repeats are 1 in 10000 for gettod(p6) br.cond.dpnt.few .time_normalize ;; // Divided by 8 though shift. Now divide by 125 // The compiler was able to do that with a multiply // and a shift and we do the sameEX(.fail_efault, probe.w.fault r23, 3) // This also costs 5 cycles(p14) xmpy.hu f8 = f8, f7 // xmpy has 5 cycles latency so use it... ;; mov r8 = r0(p14) getf.sig r2 = f8 ;;(p14) shr.u r21 = r2, 4 ;;EX(.fail_efault, st8 [r31] = r9)EX(.fail_efault, st8 [r23] = r21) FSYS_RETURN.fail_einval: mov r8 = EINVAL mov r10 = -1 FSYS_RETURN.fail_efault: mov r8 = EFAULT mov r10 = -1 FSYS_RETURNEND(fsys_gettimeofday)ENTRY(fsys_clock_gettime) .prologue .altrp b6 .body cmp4.ltu p6, p0 = CLOCK_MONOTONIC, r32 // Fallback if this is not CLOCK_REALTIME or CLOCK_MONOTONIC(p6) br.spnt.few fsys_fallback_syscall mov r31 = r33 shl r30 = r32,15 br.many .gettimeEND(fsys_clock_gettime)/* * long fsys_rt_sigprocmask (int how, sigset_t *set, sigset_t *oset, size_t sigsetsize). */#if _NSIG_WORDS != 1# error Sorry, fsys_rt_sigprocmask() needs to be updated for _NSIG_WORDS != 1.#endifENTRY(fsys_rt_sigprocmask) .prologue .altrp b6 .body add r2=IA64_TASK_BLOCKED_OFFSET,r16 add r9=TI_FLAGS+IA64_TASK_SIZE,r16 cmp4.ltu p6,p0=SIG_SETMASK,r32 cmp.ne p15,p0=r0,r34 // oset != NULL? tnat.nz p8,p0=r34 add r31=IA64_TASK_SIGHAND_OFFSET,r16 ;; ld8 r3=[r2] // read/prefetch current->blocked ld4 r9=[r9] tnat.nz.or p6,p0=r35 cmp.ne.or p6,p0=_NSIG_WORDS*8,r35 tnat.nz.or p6,p0=r32(p6) br.spnt.few .fail_einval // fail with EINVAL ;;#ifdef CONFIG_SMP ld8 r31=[r31] // r31 <- current->sighand#endif and r9=TIF_ALLWORK_MASK,r9 tnat.nz.or p8,p0=r33 ;; cmp.ne p7,p0=0,r9 cmp.eq p6,p0=r0,r33 // set == NULL? add r31=IA64_SIGHAND_SIGLOCK_OFFSET,r31 // r31 <- current->sighand->siglock(p8) br.spnt.few .fail_efault // fail with EFAULT(p7) br.spnt.many fsys_fallback_syscall // got pending kernel work...(p6) br.dpnt.many .store_mask // -> short-circuit to just reading the signal mask /* Argh, we actually have to do some work and _update_ the signal mask: */EX(.fail_efault, probe.r.fault r33, 3) // verify user has read-access to *setEX(.fail_efault, ld8 r14=[r33]) // r14 <- *set mov r17=(1 << (SIGKILL - 1)) | (1 << (SIGSTOP - 1)) ;; rsm psr.i // mask interrupt delivery mov ar.ccv=0 andcm r14=r14,r17 // filter out SIGKILL & SIGSTOP#ifdef CONFIG_SMP mov r17=1 ;; cmpxchg4.acq r18=[r31],r17,ar.ccv // try to acquire the lock mov r8=EINVAL // default to EINVAL ;; ld8 r3=[r2] // re-read current->blocked now that we hold the lock cmp4.ne p6,p0=r18,r0(p6) br.cond.spnt.many .lock_contention ;;#else ld8 r3=[r2] // re-read current->blocked now that we hold the lock mov r8=EINVAL // default to EINVAL#endif add r18=IA64_TASK_PENDING_OFFSET+IA64_SIGPENDING_SIGNAL_OFFSET,r16 add r19=IA64_TASK_SIGNAL_OFFSET,r16 cmp4.eq p6,p0=SIG_BLOCK,r32 ;; ld8 r19=[r19] // r19 <- current->signal cmp4.eq p7,p0=SIG_UNBLOCK,r32 cmp4.eq p8,p0=SIG_SETMASK,r32 ;; ld8 r18=[r18] // r18 <- current->pending.signal .pred.rel.mutex p6,p7,p8(p6) or r14=r3,r14 // SIG_BLOCK(p7) andcm r14=r3,r14 // SIG_UNBLOCK(p8) mov r14=r14 // SIG_SETMASK(p6) mov r8=0 // clear error code // recalc_sigpending() add r17=IA64_SIGNAL_GROUP_STOP_COUNT_OFFSET,r19 add r19=IA64_SIGNAL_SHARED_PENDING_OFFSET+IA64_SIGPENDING_SIGNAL_OFFSET,r19 ;; ld4 r17=[r17] // r17 <- current->signal->group_stop_count(p7) mov r8=0 // clear error code ld8 r19=[r19] // r19 <- current->signal->shared_pending ;; cmp4.gt p6,p7=r17,r0 // p6/p7 <- (current->signal->group_stop_count > 0)?(p8) mov r8=0 // clear error code or r18=r18,r19 // r18 <- current->pending | current->signal->shared_pending ;; // r18 <- (current->pending | current->signal->shared_pending) & ~current->blocked: andcm r18=r18,r14 add r9=TI_FLAGS+IA64_TASK_SIZE,r16 ;;(p7) cmp.ne.or.andcm p6,p7=r18,r0 // p6/p7 <- signal pending mov r19=0 // i must not leak kernel bits...(p6) br.cond.dpnt.many .sig_pending ;;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -