📄 bpsk_fading_pzfan.m
字号:
% Program 3-2
% bpsk_fading.m
%
% Simulation program to realize BPSK transmission system
% (under one path fading)
%
% Programmed by H.Harada and T.Yamamura,
%
echo off;
%******************** Preparation part **********************
sr=256000.0; % Symbol rate
ml=1; % Number of modulation levels
br=sr.*ml; % Bit rate (=symbol rate in this case)
nd = 100; % Number of symbols that simulates in each loop
ebn0=10; % Eb/N0
IPOINT=8; % Number of oversamples
%******************* Filter initialization ********************
irfn=21; % Number of filter taps
alfs=0.5; % Rolloff factor
[xh] = hrollfcoef(irfn,IPOINT,sr,alfs,1); %Transmitter filter coefficients
[xh2] = hrollfcoef(irfn,IPOINT,sr,alfs,0); %Receiver filter coefficients
%******************* Fading initialization ********************
% If you use fading function "sefade", you can initialize all of parameters.
% Otherwise you can comment out the following initialization.
% The detailed explanation of all of valiables are mentioned in Program 2-8.
% Time resolution
tstp=1/sr/IPOINT;
% Arrival time for each multipath normalized by tstp
% If you would like to simulate under one path fading model, you have only to set
% direct wave.
itau = [0];
% Mean power for each multipath normalized by direct wave.
% If you would like to simulate under one path fading model, you have only to set
% direct wave.
dlvl = [0];
% Number of waves to generate fading for each multipath.
% In normal case, more than six waves are needed to generate Rayleigh fading
n0=[6];
% Initial Phase of delayed wave
% In this simulation four-path Rayleigh fading are considered.
th1=[0.0];
% Number of fading counter to skip
itnd0=nd*IPOINT*100;
% Initial value of fading counter
% In this simulation one-path Rayleigh fading are considered.
% Therefore one fading counter are needed.
itnd1=[1000];
% Number of directwave + Number of delayed wave
% In this simulation one-path Rayleigh fading are considered
now1=1;
% Maximum Doppler frequency [Hz]
% You can insert your favorite value
fd=160;
% You can decide two mode to simulate fading by changing the variable flat
% flat : flat fading or not
% (1->flat (only amplitude is fluctuated),0->nomal(phase and amplitude are fluctutated)
flat =1;
%******************** START CALCULATION *********************
nloop=1000; % Number of simulation loops
noe = 0; % Number of error data
nod = 0; % Number of transmitted data
nebn0=20; % number of ber-ebn0 points
ber=0:nebn0;
echo off;
for ebn0=1:nebn0,
noe = 0; % Number of error data
nod = 0; % Number of transmitted data
iii=0;
while noe<=1000,
% for iii=1:nloop
% nloop=100; % Number of simulation loops
iii=iii+1;
% for iii=1:nloop
%******************** Data generation ***********************
data=rand(1,nd)>0.5; % rand: built in function
%******************** BPSK Modulation ***********************
data1=data.*2-1;
[data2] = oversamp( data1, nd , IPOINT) ;
data3 = conv(data2,xh); % conv: built in function
%****************** Attenuation Calculation *****************
spow=sum(data3.*data3)/nd;
attn=0.5*spow*sr/br*10.^(-ebn0/10);
attn=sqrt(attn);
%********************** Fading channel **********************
% Generated data are fed into a fading simulator
% In the case of BPSK, only Ich data are fed into fading counter
[ifade,qfade]=sefade(data3,zeros(1,length(data3)),itau,dlvl,th1,n0,itnd1,now1,length(data3),tstp,fd,flat);
% Updata fading counter
itnd1 = itnd1+ itnd0;
%************ Add White Gaussian Noise (AWGN) ***************
inoise=randn(1,length(ifade)).*attn; % randn: built in function
data4=ifade+inoise;
data5=conv(data4,xh2); % conv: built in function
sampl=irfn*IPOINT+1;
data6 = data5(sampl:8:8*nd+sampl-1);
%******************** BPSK Demodulation *********************
demodata=data6 > 0;
%******************** Bit Error Rate (BER) ******************
% count number of instantaneous errors
noe2=sum(abs(data-demodata)); % sum: built in function
% count number of instantaneous transmitted data
nod2=length(data); % length: built in function
noe=noe+noe2;
nod=nod+nod2;
%fprintf('%d\t%e\n',iii,noe2/nod2);
%end % for iii=1:nloop
end % for noe<=100
%********************** Output result ***************************
ber(ebn0) = noe/nod;
fprintf('%d\t%e\n',ebn0, ber(ebn0));
% fprintf('%d\t%d\t%d\t%e\n',ebn0,noe,nod,noe/nod);
% fid = fopen('BERbpsk.dat','a');
% fprintf(fid,'%d\t%e\t%f\t%f\t\n',ebn0,noe/nod,noe,nod);
% fclose(fid);
end % for ebn0
SNRindB1=0:nebn0;
SNRindB2=0:0.1:nebn0;
echo on;
for i=1:length(SNRindB2),
SNR=exp(SNRindB2(i)*log(10)/10); % signal to noise ratio
theo_err_prb(i)=0.5*(1-1/sqrt(1+1/SNR));
% theo_err_prb(i)=0.5*erfc(sqrt(SNR)); % theoretical bit error rate
echo off;
end;
echo on;
% Plotting commands follow
semilogy(SNRindB1,ber,'*');
hold
semilogy(SNRindB2,theo_err_prb);
%ber = noe/nod;
%fprintf('%d\t%d\t%d\t%e\n',ebn0,noe,nod,noe/nod);
%fid = fopen('BERbpskfad.dat','a');
%fprintf(fid,'%d\t%e\t%f\t%f\t\n',ebn0,noe/nod,noe,nod);
%fclose(fid);
end;
%******************** end of file ***************************
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -