⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 mk_chmm.m

📁 bayes net tool how to use the bayes net toolbox
💻 M
字号:
function bnet = mk_chmm(N, Q, Y, discrete_obs, coupled, CPD)% MK_CHMM Make a coupled Hidden Markov Model%% There are N hidden nodes, each connected to itself and its two nearest neighbors in the next% slice (apart from the edges, where there is 1 nearest neighbor).%% Example: If N = 3, the hidden backbone is as follows, where all arrows point to the righ+t%% X1--X2%   \/ %   /\% X2--X2%   \/ %   /\% X3--X3%% Each hidden node has a "private" observed child (not shown).%% BNET = MK_CHMM(N, Q, Y)% Each hidden node is discrete and has Q values.% Each observed node is a Gaussian vector of length Y.%% BNET = MK_CHMM(N, Q, Y, DISCRETE_OBS)% If discrete_obs = 1, the observations are discrete (values in {1, .., Y}).%% BNET = MK_CHMM(N, Q, Y, DISCRETE_OBS, COUPLED)% If coupled = 0, the chains are not coupled, i.e., we make N parallel HMMs.%% BNET = MK_CHMM(N, Q, Y, DISCRETE_OBS, COUPLED, CPDs)% means use the specified CPD structures instead of creating random params.%  CPD{i}.CPT, i=1:N specifies the prior%  CPD{i}.CPT, i=2N+1:3N specifies the transition model%  CPD{i}.mean, CPD{i}.cov, i=N+1:2N specifies the observation model if Gaussian%  CPD{i}.CPT, i=N+1:2N if discreteif nargin < 2, Q = 2; endif nargin < 3, Y = 1; endif nargin < 4, discrete_obs = 0; endif nargin < 5, coupled = 1; endif nargin < 6, rnd = 1; else rnd = 0; end  ss = N*2;hnodes = 1:N;onodes = (1:N)+N;intra = zeros(ss);for i=1:N  intra(hnodes(i), onodes(i))=1;endinter = zeros(ss);if coupled  for i=1:N    inter(i, max(i-1,1):min(i+1,N))=1;  endelse  inter(1:N, 1:N) = eye(N);end  ns = [Q*ones(1,N) Y*ones(1,N)]; eclass1 = [hnodes onodes];eclass2 = [hnodes+ss onodes];if discrete_obs  dnodes = 1:ss;else  dnodes = hnodes;endbnet = mk_dbn(intra, inter, ns, 'discrete', dnodes, 'eclass1', eclass1, 'eclass2', eclass2, ...	      'observed', onodes);if rnd  for i=hnodes(:)'    bnet.CPD{i} = tabular_CPD(bnet, i);  end  for i=onodes(:)'    if discrete_obs      bnet.CPD{i} = tabular_CPD(bnet, i);    else      bnet.CPD{i} = gaussian_CPD(bnet, i);    end  end  for i=hnodes(:)'+ss    bnet.CPD{i} = tabular_CPD(bnet, i);  endelse  for i=hnodes(:)'    bnet.CPD{i} = tabular_CPD(bnet, i, CPD{i}.CPT);  end  for i=onodes(:)'    if discrete_obs      bnet.CPD{i} = tabular_CPD(bnet, i, CPD{i}.CPT);    else      bnet.CPD{i} = gaussian_CPD(bnet, i, CPD{i}.mean, CPD{i}.cov);    end  end  for i=hnodes(:)'+ss    bnet.CPD{i} = tabular_CPD(bnet, i, CPD{i}.CPT);  endend

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -