📄 mk_chmm.m
字号:
function bnet = mk_chmm(N, Q, Y, discrete_obs, coupled, CPD)% MK_CHMM Make a coupled Hidden Markov Model%% There are N hidden nodes, each connected to itself and its two nearest neighbors in the next% slice (apart from the edges, where there is 1 nearest neighbor).%% Example: If N = 3, the hidden backbone is as follows, where all arrows point to the righ+t%% X1--X2% \/ % /\% X2--X2% \/ % /\% X3--X3%% Each hidden node has a "private" observed child (not shown).%% BNET = MK_CHMM(N, Q, Y)% Each hidden node is discrete and has Q values.% Each observed node is a Gaussian vector of length Y.%% BNET = MK_CHMM(N, Q, Y, DISCRETE_OBS)% If discrete_obs = 1, the observations are discrete (values in {1, .., Y}).%% BNET = MK_CHMM(N, Q, Y, DISCRETE_OBS, COUPLED)% If coupled = 0, the chains are not coupled, i.e., we make N parallel HMMs.%% BNET = MK_CHMM(N, Q, Y, DISCRETE_OBS, COUPLED, CPDs)% means use the specified CPD structures instead of creating random params.% CPD{i}.CPT, i=1:N specifies the prior% CPD{i}.CPT, i=2N+1:3N specifies the transition model% CPD{i}.mean, CPD{i}.cov, i=N+1:2N specifies the observation model if Gaussian% CPD{i}.CPT, i=N+1:2N if discreteif nargin < 2, Q = 2; endif nargin < 3, Y = 1; endif nargin < 4, discrete_obs = 0; endif nargin < 5, coupled = 1; endif nargin < 6, rnd = 1; else rnd = 0; end ss = N*2;hnodes = 1:N;onodes = (1:N)+N;intra = zeros(ss);for i=1:N intra(hnodes(i), onodes(i))=1;endinter = zeros(ss);if coupled for i=1:N inter(i, max(i-1,1):min(i+1,N))=1; endelse inter(1:N, 1:N) = eye(N);end ns = [Q*ones(1,N) Y*ones(1,N)]; eclass1 = [hnodes onodes];eclass2 = [hnodes+ss onodes];if discrete_obs dnodes = 1:ss;else dnodes = hnodes;endbnet = mk_dbn(intra, inter, ns, 'discrete', dnodes, 'eclass1', eclass1, 'eclass2', eclass2, ... 'observed', onodes);if rnd for i=hnodes(:)' bnet.CPD{i} = tabular_CPD(bnet, i); end for i=onodes(:)' if discrete_obs bnet.CPD{i} = tabular_CPD(bnet, i); else bnet.CPD{i} = gaussian_CPD(bnet, i); end end for i=hnodes(:)'+ss bnet.CPD{i} = tabular_CPD(bnet, i); endelse for i=hnodes(:)' bnet.CPD{i} = tabular_CPD(bnet, i, CPD{i}.CPT); end for i=onodes(:)' if discrete_obs bnet.CPD{i} = tabular_CPD(bnet, i, CPD{i}.CPT); else bnet.CPD{i} = gaussian_CPD(bnet, i, CPD{i}.mean, CPD{i}.cov); end end for i=hnodes(:)'+ss bnet.CPD{i} = tabular_CPD(bnet, i, CPD{i}.CPT); endend
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -