📄 ffa.m
字号:
% function [L,Ph,LL]=ffa(X,K,cyc,tol);% % Fast Maximum Likelihood Factor Analysis using EM%% X - data matrix% K - number of factors% cyc - maximum number of cycles of EM (default 100)% tol - termination tolerance (prop change in likelihood) (default 0.0001)%% L - factor loadings % Ph - diagonal uniquenesses matrix% LL - log likelihood curve%% Iterates until a proportional change < tol in the log likelihood % or cyc steps of EM %function [L,Ph,LL]=ffa(X,K,cyc,tol);if nargin<4 tol=0.0001; end;if nargin<3 cyc=100; end;N=length(X(:,1));D=length(X(1,:));tiny=exp(-700);X=X-ones(N,1)*mean(X);XX=X'*X/N;diagXX=diag(XX);randn('seed', 0);cX=cov(X);scale=det(cX)^(1/D);L=randn(D,K)*sqrt(scale/K);Ph=diag(cX);I=eye(K);lik=0; LL=[];const=-D/2*log(2*pi);for i=1:cyc; %%%% E Step %%%% Phd=diag(1./Ph); LP=Phd*L; MM=Phd-LP*inv(I+L'*LP)*LP'; dM=sqrt(det(MM)); beta=L'*MM; XXbeta=XX*beta'; EZZ=I-beta*L +beta*XXbeta; %%%% Compute log likelihood %%%% oldlik=lik; lik=N*const+N*log(dM)-0.5*N*sum(diag(MM*XX)); fprintf('cycle %i lik %g \n',i,lik); LL=[LL lik]; %%%% M Step %%%% L=XXbeta*inv(EZZ); Ph=diagXX-diag(L*XXbeta'); if (i<=2) likbase=lik; elseif (lik<oldlik) disp('VIOLATION'); elseif ((lik-likbase)<(1+tol)*(oldlik-likbase)|~finite(lik)) break; end;end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -