⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 pid.c

📁 CNC 的开放码,EMC2 V2.2.8版
💻 C
📖 第 1 页 / 共 2 页
字号:
/********************************************************************* Description:  pid.c*               This file, 'pid.c', is a HAL component that provides *               Proportional/Integeral/Derivative control loops.** Author: John Kasunich* License: GPL Version 2*    * Copyright (c) 2003 All rights reserved.** Last change: # $Revision: 1.31 $* $Author: swpadnos $* $Date: 2007/09/23 02:49:20 $********************************************************************//** This file, 'pid.c', is a HAL component that provides Proportional/    Integeral/Derivative control loops.  It is a realtime component.    It supports a maximum of 16 PID loops, as set by the insmod parameter    'num_chan'.    In this documentation, it is assumed that we are discussing position    loops.  However this component can be used to implement other loops    such as speed loops, torch height control, and others.    Each loop has a number of pins and parameters, whose names begin    with 'pid.x.', where 'x' is the channel number.  Channel numbers    start at zero.    The three most important pins are 'command', 'feedback', and    'output'.  For a position loop, 'command' and 'feedback' are    in position units.  For a linear axis, this could be inches,    mm, metres, or whatever is relavent.  Likewise, for a angular    axis, it could be degrees, radians, etc.  The units of the    'output' pin represent the change needed to make the feedback    match the command.  As such, for a position loop 'Output' is    a velocity, in inches/sec, mm/sec, degrees/sec, etc.    Each loop has several other pins as well.  'error' is equal to    'command' minus 'feedback'.  'enable' is a bit that enables    the loop.  If 'enable' is false, all integrators are reset,    and the output is forced to zero.  If 'enable' is true, the    loop operates normally.    The PID gains, limits, and other 'tunable' features of the    loop are implemented as parameters.  These are as follows:    Pgain	Proportional gain    Igain	Integral gain    Dgain	Derivative gain    bias	Constant offset on output    FF0		Zeroth order Feedforward gain    FF1		First order Feedforward gain    FF2		Second order Feedforward gain    deadband	Amount of error that will be ignored    maxerror	Limit on error    maxerrorI	Limit on error integrator    maxerrorD	Limit on error differentiator    maxcmdD	Limit on command differentiator    maxcmdDD	Limit on command 2nd derivative    maxoutput	Limit on output value    All of the limits (max____) are implemented such that if the    parameter value is zero, there is no limit.    A number of internal values which may be usefull for testing    and tuning are also available as parameters.  To avoid cluttering    the parameter list, these are only exported if "debug=1" is    specified on the insmod command line.    errorI	Integral of error    errorD	Derivative of error    commandD	Derivative of the command    commandDD	2nd derivative of the command    The PID loop calculations are as follows (see the code for    all the nitty gritty details):    error = command - feedback    if ( abs(error) < deadband ) then error = 0    limit error to +/- maxerror    errorI += error * period    limit errorI to +/- maxerrorI    errorD = (error - previouserror) / period    limit errorD to +/- maxerrorD    commandD = (command - previouscommand) / period    limit commandD to +/- maxcmdD    commandDD = (commandD - previouscommandD) / period    limit commandDD to +/- maxcmdDD    output = bias + error * Pgain + errorI * Igain +             errorD * Dgain + command * FF0 + commandD * FF1 +             commandDD * FF2    limit output to +/- maxoutput    This component exports one function called 'pid.x.do-pid-calcs'    for each PID loop.  This allows loops to be included in different    threads and execute at different rates.*//** Copyright (C) 2003 John Kasunich                       <jmkasunich AT users DOT sourceforge DOT net>*//** This program is free software; you can redistribute it and/or    modify it under the terms of version 2 of the GNU General    Public License as published by the Free Software Foundation.    This library is distributed in the hope that it will be useful,    but WITHOUT ANY WARRANTY; without even the implied warranty of    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the    GNU General Public License for more details.    You should have received a copy of the GNU General Public    License along with this library; if not, write to the Free Software    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111 USA    THE AUTHORS OF THIS LIBRARY ACCEPT ABSOLUTELY NO LIABILITY FOR    ANY HARM OR LOSS RESULTING FROM ITS USE.  IT IS _EXTREMELY_ UNWISE    TO RELY ON SOFTWARE ALONE FOR SAFETY.  Any machinery capable of    harming persons must have provisions for completely removing power    from all motors, etc, before persons enter any danger area.  All    machinery must be designed to comply with local and national safety    codes, and the authors of this software can not, and do not, take    any responsibility for such compliance.    This code was written as part of the EMC HAL project.  For more    information, go to www.linuxcnc.org.*/#ifndef RTAPI#error This is a realtime component only!#endif#include "rtapi.h"		/* RTAPI realtime OS API */#include "rtapi_app.h"		/* RTAPI realtime module decls */#include "hal.h"		/* HAL public API decls *//* module information */MODULE_AUTHOR("John Kasunich");MODULE_DESCRIPTION("PID Loop Component for EMC HAL");MODULE_LICENSE("GPL");static int num_chan = 3;	/* number of channels - default = 3 */RTAPI_MP_INT(num_chan, "number of channels");static int debug = 0;		/* flag to export optional params */RTAPI_MP_INT(debug, "enables optional params");/************************************************************************                STRUCTURES AND GLOBAL VARIABLES                       *************************************************************************//** This structure contains the runtime data for a single PID loop.    The data is arranged to optimize speed - they are placed in the    order in which they will be accessed, so that when one item is    accessed, the next item(s) will be pulled into the cache.  In    addition, items that are written are grouped together, so only    a few cache lines will need to be written back to main memory.*/typedef struct {    hal_bit_t *enable;		/* pin: enable input */    hal_float_t *command;	/* pin: commanded value */    hal_float_t *feedback;	/* pin: feedback value */    hal_float_t *error;		/* pin: command - feedback */    hal_float_t deadband;	/* param: deadband */    hal_float_t maxerror;	/* param: limit for error */    hal_float_t maxerror_i;	/* param: limit for integrated error */    hal_float_t maxerror_d;	/* param: limit for differentiated error */    hal_float_t maxcmd_d;	/* param: limit for differentiated cmd */    hal_float_t maxcmd_dd;	/* param: limit for 2nd derivative of cmd */    hal_float_t error_i;	/* opt. param: integrated error */    float prev_error;		/* previous error for differentiator */    hal_float_t error_d;	/* opt. param: differentiated error */    float prev_cmd;		/* previous command for differentiator */    float limit_state;		/* +1 or -1 if in limit, else 0.0 */    hal_float_t cmd_d;		/* opt. param: differentiated command */    hal_float_t cmd_dd;		/* opt. param: 2nd derivative of command */    hal_float_t bias;		/* param: steady state offset */    hal_float_t pgain;		/* param: proportional gain */    hal_float_t igain;		/* param: integral gain */    hal_float_t dgain;		/* param: derivative gain */    hal_float_t ff0gain;	/* param: feedforward proportional */    hal_float_t ff1gain;	/* param: feedforward derivative */    hal_float_t ff2gain;	/* param: feedforward 2nd derivative */    hal_float_t maxoutput;	/* param: limit for PID output */    hal_float_t *output;	/* pin: the output value */} hal_pid_t;/* pointer to array of pid_t structs in shared memory, 1 per loop */static hal_pid_t *pid_array;/* other globals */static int comp_id;		/* component ID *//************************************************************************                  LOCAL FUNCTION DECLARATIONS                         *************************************************************************/static int export_pid(int num, hal_pid_t * addr);static void calc_pid(void *arg, long period);/************************************************************************                       INIT AND EXIT CODE                             *************************************************************************/#define MAX_CHAN 16int rtapi_app_main(void){    int n, retval;    /* test for number of channels */    if ((num_chan <= 0) || (num_chan > MAX_CHAN)) {	rtapi_print_msg(RTAPI_MSG_ERR,	    "PID: ERROR: invalid num_chan: %d\n", num_chan);	return -1;    }    /* have good config info, connect to the HAL */    comp_id = hal_init("pid");    if (comp_id < 0) {	rtapi_print_msg(RTAPI_MSG_ERR, "PID: ERROR: hal_init() failed\n");	return -1;    }    /* allocate shared memory for pid loop data */    pid_array = hal_malloc(num_chan * sizeof(hal_pid_t));    if (pid_array == 0) {	rtapi_print_msg(RTAPI_MSG_ERR, "PID: ERROR: hal_malloc() failed\n");	hal_exit(comp_id);	return -1;    }    /* export variables and function for each PID loop */    for (n = 0; n < num_chan; n++) {	/* export everything for this loop */	retval = export_pid(n, &(pid_array[n]));	if (retval != 0) {	    rtapi_print_msg(RTAPI_MSG_ERR,		"PID: ERROR: loop %d var export failed\n", n);	    hal_exit(comp_id);	    return -1;	}    }    rtapi_print_msg(RTAPI_MSG_INFO, "PID: installed %d PID loops\n",	num_chan);    hal_ready(comp_id);    return 0;}void rtapi_app_exit(void){    hal_exit(comp_id);}/************************************************************************                   REALTIME PID LOOP CALCULATIONS                     *************************************************************************/static void calc_pid(void *arg, long period){    hal_pid_t *pid;    float tmp1, tmp2;    int enable;    float periodfp, periodrecip;    /* point to the data for this PID loop */    pid = arg;    /* precalculate some timing constants */    periodfp = period * 0.000000001;    periodrecip = 1.0 / periodfp;    /* get the enable bit */    enable = *(pid->enable);    /* calculate the error */    tmp1 = *(pid->command) - *(pid->feedback);    /* store error to error pin */    *(pid->error) = tmp1;    /* apply error limits */    if (pid->maxerror != 0.0) {	if (tmp1 > pid->maxerror) {

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -