📄 author.py
字号:
# This is a component of emc2# Copyright 2007 Jeff Epler <jepler@unpythonic.net>## This program is free software; you can redistribute it and/or modify# it under the terms of the GNU General Public License as published by# the Free Software Foundation; either version 2 of the License, or# (at your option) any later version.## This program is distributed in the hope that it will be useful,# but WITHOUT ANY WARRANTY; without even the implied warranty of# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the# GNU General Public License for more details.## You should have received a copy of the GNU General Public License# along with this program; if not, write to the Free Software# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USAimport sys, mathdef dist_lseg(l1, l2, p): "Compute the 3D distance from the line segment l1..l2 to the point p." x0, y0, z0 = l1 xa, ya, za = l2 xi, yi, zi = p dx = xa-x0 dy = ya-y0 dz = za-z0 d2 = dx*dx + dy*dy + dz*dz if d2 == 0: return 0 t = (dx * (xi-x0) + dy * (yi-y0) + dz * (zi-z0)) / d2 if t < 0: t = 0 if t > 1: t = 1 dist2 = (xi - x0 - t*dx)**2 + (yi - y0 - t*dy)**2 + (zi - z0 - t*dz)**2 return dist2 ** .5def rad1(x1,y1,x2,y2,x3,y3): x12 = x1-x2 y12 = y1-y2 x23 = x2-x3 y23 = y2-y3 x31 = x3-x1 y31 = y3-y1 den = abs(x12 * y23 - x23 * y12) if abs(den) < 1e-5: return sys.maxint #print "rad1", x1, y1, x2, y2, x3, y3 math.hypot(x12, y12) * math.hypot(x23, y23) * math.hypot(x31, y31) / 2 / den return math.hypot(x12, y12) * math.hypot(x23, y23) * math.hypot(x31, y31) / 2 / denclass Point: def __init__(self, x, y): self.x = x self.y = y def __str__(self): return "<%f,%f>" % (self.x, self.y) def __sub__(self, other): return Point(self.x - other.x, self.y - other.y) def __add__(self, other): return Point(self.x + other.x, self.y + other.y) def __mul__(self, other): return Point(self.x * other, self.y * other) __rmul__ = __mul__ def cross(self, other): return self.x * other.y - self.y * other.x def dot(self, other): return self.x * other.x + self.y * other.y def mag(self): return hypot(self.x, self.y) def mag2(self): return self.x**2 + self.y**2def cent1(x1,y1,x2,y2,x3,y3): P1 = Point(x1,y1) P2 = Point(x2,y2) P3 = Point(x3,y3) den = abs((P1-P2).cross(P2-P3)) if abs(den) < 1e-5: return sys.maxint, sys.maxint alpha = (P2-P3).mag2() * (P1-P2).dot(P1-P3) / 2 / den / den beta = (P1-P3).mag2() * (P2-P1).dot(P2-P3) / 2 / den / den gamma = (P1-P2).mag2() * (P3-P1).dot(P3-P2) / 2 / den / den Pc = alpha * P1 + beta * P2 + gamma * P3 #print >>sys.stderr, "cent1", P1, P2, P3, Pc #print >>sys.stderr, "\t", alpha, beta, gamma return Pc.x, Pc.ydef arc_center(plane, p1, p2, p3): x1, y1, z1 = p1 x2, y2, z2 = p2 x3, y3, z3 = p3 if plane == 17: return cent1(x1,y1,x2,y2,x3,y3) if plane == 18: return cent1(x1,z1,x2,z2,x3,z3) if plane == 19: return cent1(y1,z1,y2,z2,y3,z3) def arc_rad(plane, P1, P2, P3): if plane is None: return sys.maxint x1, y1, z1 = P1 x2, y2, z2 = P2 x3, y3, z3 = P3 if plane == 17: return rad1(x1,y1,x2,y2,x3,y3) if plane == 18: return rad1(x1,z1,x2,z2,x3,z3) if plane == 19: return rad1(y1,z1,y2,z2,y3,z3) return None, 0def get_pts(plane, (x,y,z)): if plane == 17: return x,y if plane == 18: return x,z if plane == 19: return y,zdef one_quadrant(plane, c, p1, p2, p3): xc, yc = c x1, y1 = get_pts(plane, p1) x2, y2 = get_pts(plane, p2) x3, y3 = get_pts(plane, p3) def sign(x): if abs(x) < 1e-5: return 0 if x < 0: return -1 return 1 signs = set(( (sign(x1-xc),sign(y1-yc)), (sign(x2-xc),sign(y2-yc)), (sign(x3-xc),sign(y3-yc)) )) if len(signs) == 1: return True if (1,1) in signs: signs.discard((1,0)) signs.discard((0,1)) if (1,-1) in signs: signs.discard((1,0)) signs.discard((0,-1)) if (-1,1) in signs: signs.discard((-1,0)) signs.discard((0,1)) if (-1,-1) in signs: signs.discard((-1,0)) signs.discard((0,-1)) if len(signs) == 1: return Truedef arc_dir(plane, c, p1, p2, p3): xc, yc = c x1, y1 = get_pts(plane, p1) x2, y2 = get_pts(plane, p2) x3, y3 = get_pts(plane, p3) theta_start = math.atan2(y1-yc, x1-xc) theta_mid = math.atan2(y2-yc, x2-xc) theta_end = math.atan2(y3-yc, x3-xc) if theta_mid < theta_start: theta_mid = theta_mid + 2 * math.pi while theta_end < theta_mid: theta_end = theta_end + 2 * math.pi return theta_end < 2 * math.pidef arc_fmt(plane, c1, c2, p1): x, y, z = p1 if plane == 17: return "I%.4f J%.4f" % (c1-x, c2-y) if plane == 18: return "I%.4f K%.4f" % (c1-x, c2-z) if plane == 19: return "J%.4f K%.4f" % (c1-y, c2-z)def douglas(st, tolerance=.001, plane=None, _first=True): """\Perform Douglas-Peucker simplification on the path 'st' with the specifiedtolerance. The '_first' argument is for internal use only.The Douglas-Peucker simplification algorithm finds a subset of the input pointswhose path is never more than 'tolerance' away from the original input path.If 'plane' is specified as 17, 18, or 19, it may find helical arcs in the givenplane in addition to lines. Note that if there is movement in the planeperpendicular to the arc, it will be distorted, so 'plane' should usuallybe specified only when there is only movement on 2 axes""" if len(st) == 1: yield "G1", st[0], None return l1 = st[0] l2 = st[-1] worst_dist = 0 worst = 0 min_rad = sys.maxint max_arc = -1 ps = st[0] pe = st[-1] for i, p in enumerate(st): if p is l1 or p is l2: continue dist = dist_lseg(l1, l2, p) if dist > worst_dist: worst = i worst_dist = dist rad = arc_rad(plane, ps, p, pe) #print >>sys.stderr, "rad", rad, max_arc, min_rad if rad < min_rad: max_arc = i min_rad = rad worst_arc_dist = 0 if min_rad != sys.maxint: c1, c2 = arc_center(plane, ps, st[max_arc], pe) lx, ly, lz = st[0] if one_quadrant(plane, (c1, c2), ps, st[max_arc], pe): for i, (x,y,z) in enumerate(st): if plane == 17: dist = abs(math.hypot(c1-x, c2-y) - min_rad) elif plane == 18: dist = abs(math.hypot(c1-x, c2-z) - min_rad) elif plane == 19: dist = abs(math.hypot(c1-y, c2-z) - min_rad) else: dist = sys.maxint #print >>sys.stderr, "wad", dist, worst_arc_dist if dist > worst_arc_dist: worst_arc_dist = dist mx = (x+lx)/2 my = (y+ly)/2 mz = (z+lz)/2 if plane == 17: dist = abs(math.hypot(c1-mx, c2-my) - min_rad) elif plane == 18: dist = abs(math.hypot(c1-mx, c2-mz) - min_rad) elif plane == 19: dist = abs(math.hypot(c1-my, c2-mz) - min_rad) else: dist = sys.maxint #if dist > worst_arc_dist: worst_arc_dist = dist lx, ly, lz = x, y, z else: worst_arc_dist = sys.maxint else: worst_arc_dist = sys.maxint #if worst_arc_dist != sys.maxint: #print >>sys.stderr, "douglas", len(st), "\n\t", st[0], "\n\t", st[max_arc], "\n\t", st[-1] #print >>sys.stderr, "\t", worst_arc_dist, worst_dist #print >>sys.stderr, "\t", c1, c2 if worst_arc_dist < tolerance and worst_arc_dist < worst_dist: ccw = arc_dir(plane, (c1, c2), ps, st[max_arc], pe) if plane == 18: ccw = not ccw # wtf? yield "G1", ps, None if ccw: yield "G3", st[-1], arc_fmt(plane, c1, c2, ps) else: yield "G2", st[-1], arc_fmt(plane, c1, c2, ps) elif worst_dist > tolerance: if _first: yield "G1", st[0], None for i in douglas(st[:worst+1], tolerance, plane, False): yield i yield "G1", st[worst], None for i in douglas(st[worst:], tolerance, plane, False): yield i if _first: yield "G1", st[-1], None else: if _first: yield "G1", st[0], None if _first: yield "G1", st[-1], Noneclass Gcode: "For creating rs274ngc files" def __init__(self, homeheight = 1.5, safetyheight = 0.04, tolerance=0.001, spindle_speed=1000, units="G20", target=lambda s: sys.stdout.write(s + "\n")): self.lastx = self.lasty = self.lastz = self.lasta = None self.lastgcode = self.lastfeed = None self.homeheight = homeheight self.safetyheight = self.lastz = safetyheight self.tolerance = tolerance self.units = units self.cuts = [] self.write = target self.time = 0 self.spindle_speed = spindle_speed self.plane = None def set_plane(self, p): assert p in (17,18,19) if p != self.plane: self.plane = p self.write("G%d" % p) def begin(self): """\This function moves to the safety height, sets many modal codes to defaultvalues, turns the spindle on at 1000RPM, and waits for it to come up tospeed.""" self.write(self.units) self.write("G0 Z%.4f" % (self.safetyheight)) self.write("G17 G40 G49") self.write("G54 G80 G90 G94") self.write("S%d M3" % (self.spindle_speed)) self.write("G04 P3") def flush(self): """\If any 'cut' moves are stored up, send them to the simplification algorithmand actually output them.This function is usually used internally (e.g., when changing from a cutto a rapid) but can be called manually as well. For instance, whena contouring program reaches the end of a row, it may be desirable to enforcethat the last 'cut' coordinate is actually in the output file, and it maygive better performance because this means that the simplification algorithmwill examine fewer points per run.""" if not self.cuts: return for move, (x, y, z), cent in douglas(self.cuts, self.tolerance, self.plane): if cent: self.write("%s X%.4f Y%.4f Z%.4f %s" % (move, x, y, z, cent)) self.lastgcode = None self.lastx = x self.lasty = y self.lastz = z else: self.move_common(x, y, z, gcode="G1") self.cuts = [] def end(self): """End the program""" self.flush() self.safety() self.write("M2") def exactpath(self): """\Set exact path mode. Note that unless self.tolerance is set to zero,the simplification algorithm may still skip over specified points.""" self.write("G61") def continuous(self, tolerance=0.0): "Set continuous mode." if tolerance > 0.0: self.write("G64 P%.4f" % tolerance) else: self.write("G64") def rapid(self, x=None, y=None, z=None, a=None): "Perform a rapid move to the specified coordinates" self.flush() self.move_common(x, y, z, a, "G0") def move_common(self, x=None, y=None, z=None, a=None, gcode="G0"): "An internal function used for G0 and G1 moves" gcodestring = xstring = ystring = zstring = astring = "" if x == None: x = self.lastx if y == None: y = self.lasty if z == None: z = self.lastz if a == None: a = self.lasta if x != self.lastx: xstring = " X%.4f" % (x) self.lastx = x if y != self.lasty: ystring = " Y%.4f" % (y) self.lasty = y if z != self.lastz: zstring = " Z%.4f" % (z) self.lastz = z if a != self.lasta: astring = " A%.4f" % (a) self.lasta = a if xstring == ystring == zstring == astring == "": return if gcode != self.lastgcode: gcodestring = gcode self.lastgcode = gcode cmd = "".join([gcodestring, xstring, ystring, zstring, astring]) if cmd: self.write(cmd) def set_feed(self, feed): "Set the feed rate to the given value" self.flush() self.write("F%.4f" % feed) def cut(self, x=None, y=None, z=None): "Perform a cutting move at the specified feed rate to the specified coordinates" if self.cuts: lastx, lasty, lastz = self.cuts[-1] else: lastx, lasty, lastz = self.lastx, self.lasty, self.lastz if x is None: x = lastx if y is None: y = lasty if z is None: z = lastz self.cuts.append([x,y,z]) def home(self): "Go to the 'home' height at rapid speed" self.flush() self.rapid(z=self.homeheight) def safety(self): "Go to the 'safety' height at rapid speed" self.flush() self.rapid(z=self.safetyheight)
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -