⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 cwr_em.m

📁 matlab Netlab库
💻 M
字号:
function cwr  = cwr_em(X, Y, nc, varargin)% CWR_LEARN Fit the parameters of a cluster weighted regression model using EM% function cwr  = cwr_learn(X, Y, ...)%% X(:, t) is the t'th input example% Y(:, t) is the t'th output example% nc is the number of clusters%% Kevin Murphy, May 2003[max_iter, thresh, cov_typeX, cov_typeY, clamp_weights, ... muX, muY, SigmaX, SigmaY, weightsY, priorC, create_init_params, ...cov_priorX, cov_priorY, verbose, regress, clamp_covX, clamp_covY] = process_options(...    varargin, 'max_iter', 10, 'thresh', 1e-2, 'cov_typeX', 'full', ...     'cov_typeY', 'full', 'clamp_weights', 0, ...     'muX', [], 'muY', [], 'SigmaX', [], 'SigmaY', [], 'weightsY', [], 'priorC', [], ...     'create_init_params', 1, 'cov_priorX', [], 'cov_priorY', [], 'verbose', 0, ...    'regress', 1, 'clamp_covX', 0, 'clamp_covY', 0);     [nx N] = size(X);[ny N2] = size(Y);if N ~= N2  error(sprintf('nsamples X (%d) ~= nsamples Y (%d)', N, N2));end%if N < nx %  fprintf('cwr_em warning: dim X (%d) > nsamples X (%d)\n', nx, N);%endif (N < nx) & regress  fprintf('cwr_em warning: dim X = %d, nsamples X = %d\n', nx, N);endif (N < ny)   fprintf('cwr_em warning: dim Y = %d, nsamples Y = %d\n', ny, N);endif (nc > N)   error(sprintf('cwr_em: more centers (%d) than data', nc))endif nc==1  % No latent variable, so there is a closed-form solution  w = 1/N;  WYbig = Y*w;  WYY = WYbig * Y';   WY = sum(WYbig, 2);  WYTY = sum(diag(WYbig' * Y));  cwr.priorC = 1;  cwr.SigmaX = [];  if ~regress    % This is just fitting an unconditional Gaussian    cwr.weightsY = [];    [cwr.muY, cwr.SigmaY] = ...	mixgauss_Mstep(1, WY, WYY, WYTY, ...		       'cov_type', cov_typeY, 'cov_prior', cov_priorY);    % There is a much easier way...    assert(approxeq(cwr.muY, mean(Y')))    assert(approxeq(cwr.SigmaY, cov(Y') + 0.01*eye(ny)))  else    % This is just linear regression    WXbig = X*w;    WXX = WXbig * X';   WX = sum(WXbig, 2);    WXTX = sum(diag(WXbig' * X));    WXY = WXbig * Y';    [cwr.muY, cwr.SigmaY, cwr.weightsY] = ...	clg_Mstep(1, WY, WYY, WYTY, WX, WXX, WXY, ...		  'cov_type', cov_typeY, 'cov_prior', cov_priorY);  end  if clamp_covY, cwr.SigmaY = SigmaY; end  if clamp_weights,  cwr.weightsY = weightsY; end  return;endif create_init_params  [cwr.muX, cwr.SigmaX] = mixgauss_init(nc, X, cov_typeX);  [cwr.muY, cwr.SigmaY] = mixgauss_init(nc, Y, cov_typeY);  cwr.weightsY = zeros(ny, nx, nc);  cwr.priorC = normalize(ones(nc,1));else  cwr.muX = muX;  cwr.muY = muY; cwr.SigmaX = SigmaX; cwr.SigmaY = SigmaY;  cwr.weightsY = weightsY; cwr.priorC = priorC;endif clamp_covY, cwr.SigmaY = SigmaY; endif clamp_covX,  cwr.SigmaX = SigmaX; endif clamp_weights,  cwr.weightsY = weightsY; endprevious_loglik = -inf;num_iter = 1;converged = 0;while (num_iter <= max_iter) & ~converged  % E step    [likXandY, likYgivenX, post] = cwr_prob(cwr, X, Y);  loglik = sum(log(likXandY));  % extract expected sufficient statistics  w = sum(post,2);  % post(c,t)  WYY = zeros(ny, ny, nc);  WY = zeros(ny, nc);  WYTY = zeros(nc,1);    WXX = zeros(nx, nx, nc);  WX = zeros(nx, nc);  WXTX = zeros(nc, 1);  WXY = zeros(nx,ny,nc);  %WYY = repmat(reshape(w, [1 1 nc]), [ny ny 1]) .*  repmat(Y*Y', [1 1 nc]);  for c=1:nc    weights = repmat(post(c,:), ny, 1);    WYbig = Y .* weights;    WYY(:,:,c) = WYbig * Y';     WY(:,c) = sum(WYbig, 2);    WYTY(c) = sum(diag(WYbig' * Y));    weights = repmat(post(c,:), nx, 1); % weights(nx, nsamples)    WXbig = X .* weights;    WXX(:,:,c) = WXbig * X';    WX(:,c) = sum(WXbig, 2);    WXTX(c) = sum(diag(WXbig' * X));    WXY(:,:,c) = WXbig * Y';  end  % M step  % Q -> X is called Q->Y in Mstep_clg  [cwr.muX, cwr.SigmaX] = mixgauss_Mstep(w, WX, WXX, WXTX, ...			    'cov_type', cov_typeX, 'cov_prior', cov_priorX);  for c=1:nc    assert(is_psd(cwr.SigmaX(:,:,c)))  end    if clamp_weights % affects estimate of mu and Sigma    W = cwr.weightsY;  else    W = [];  end  [cwr.muY, cwr.SigmaY, cwr.weightsY] = ...      clg_Mstep(w, WY, WYY, WYTY, WX, WXX, WXY, ...		'cov_type', cov_typeY, 'clamped_weights', W, ...		'cov_prior', cov_priorY);  %'xs', X, 'ys', Y, 'post', post); % debug  %a = linspace(min(Y(2,:)), max(Y(2,:)), nc+2);  %cwr.muY(2,:) = a(2:end-1);  cwr.priorC = normalize(w);  for c=1:nc    assert(is_psd(cwr.SigmaY(:,:,c)))  end  if clamp_covY, cwr.SigmaY = SigmaY; end  if clamp_covX,  cwr.SigmaX = SigmaX; end  if clamp_weights,  cwr.weightsY = weightsY; end  if verbose, fprintf(1, 'iteration %d, loglik = %f\n', num_iter, loglik); end  num_iter =  num_iter + 1;  converged = em_converged(loglik, previous_loglik, thresh);  previous_loglik = loglik;  end

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -