📄 #weightedregression.m#
字号:
function [a, b, error] = weightedRegression(x, z, w)% [a , b, error] = fitRegression(x, z, w);% % Weighted scalar linear regression%% Find a,b to minimize% error = sum(w * |z - (a*x + b)|^2) % and x(i) is a scalarif nargin < 3, w = ones(1,length(x)); endw = w(:)';x = x(:)';z = z(:)';W = sum(w);Y = sum(w .* z);YY = sum(w .* z .* z);YTY = sum(w .* z .* z);X = sum(w .* x);XX = sum(w .* x .* x);XY = sum(w .* x .* z);[b, a] = clg_Mstep_simple(W, Y, YY, YTY, X, XX, XY);error = sum(w .* (z - (a*x + b)).^2 );if 0 % demo seed = 1; rand('state', seed); randn('state', seed); x = -10:10; N = length(x); noise = randn(1,N); aTrue = rand(1,1); bTrue = rand(1,1); z = aTrue*x + bTrue + noise; w = ones(1,N); [a, b, err] = weightedRegression(x, z, w); b2=regress(z(:), [x(:) ones(N,1)]); assert(approxeq(b,b2(2))) assert(approxeq(a,b2(1))) % Make sure we go through x(15) perfectly w(15) = 1000; [aW, bW, errW] = weightedRegression(x, z, w); figure; plot(x, z, 'ro') hold on plot(x, a*x+b, 'bx-') plot(x, aW*x+bW, 'gs-') title(sprintf('a=%5.2f, aHat=%5.2f, aWHat=%5.3f, b=%5.2f, bHat=%5.2f, bWHat=%5.3f, err=%5.3f, errW=%5.3f', ... aTrue, a, aW, bTrue, b, bW, err, errW)) legend('truth', 'ls', 'wls') end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -