⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 wm_sqrt.s

📁 汇编源码大全 有各种汇编源码 希望对你有所帮助
💻 S
字号:
	.file	"wm_sqrt.S"/*---------------------------------------------------------------------------+ |  wm_sqrt.S                                                                | |                                                                           | | Fixed point arithmetic square root evaluation.                            | |                                                                           | | Copyright (C) 1992,1993                                                   | |                       W. Metzenthen, 22 Parker St, Ormond, Vic 3163,      | |                       Australia.  E-mail   billm@vaxc.cc.monash.edu.au    | |                                                                           | | Call from C as:                                                           | |   void wm_sqrt(FPU_REG *n, unsigned int control_word)                     | |                                                                           | +---------------------------------------------------------------------------*//*---------------------------------------------------------------------------+ |  wm_sqrt(FPU_REG *n, unsigned int control_word)                           | |    returns the square root of n in n.                                     | |                                                                           | |  Use Newton's method to compute the square root of a number, which must   | |  be in the range  [1.0 .. 4.0),  to 64 bits accuracy.                     | |  Does not check the sign or tag of the argument.                          | |  Sets the exponent, but not the sign or tag of the result.                | |                                                                           | |  The guess is kept in %esi:%edi                                           | +---------------------------------------------------------------------------*/#include "exception.h"#include "fpu_asm.h"#ifdef REENTRANT_FPU/*	Local storage on the stack: */#define FPU_accum_3	-4(%ebp)	/* ms word */#define FPU_accum_2	-8(%ebp)#define FPU_accum_1	-12(%ebp)#define FPU_accum_0	-16(%ebp)/* * The de-normalised argument: *                  sq_2                  sq_1              sq_0 *        b b b b b b b ... b b b   b b b .... b b b   b 0 0 0 ... 0 *           ^ binary point here */#define FPU_fsqrt_arg_2	-20(%ebp)	/* ms word */#define FPU_fsqrt_arg_1	-24(%ebp)#define FPU_fsqrt_arg_0	-28(%ebp)	/* ls word, at most the ms bit is set */#else/*	Local storage in a static area: */.data	.align 4,0FPU_accum_3:	.long	0		/* ms word */FPU_accum_2:	.long	0FPU_accum_1:	.long	0FPU_accum_0:	.long	0/* The de-normalised argument:                    sq_2                  sq_1              sq_0          b b b b b b b ... b b b   b b b .... b b b   b 0 0 0 ... 0             ^ binary point here */FPU_fsqrt_arg_2:	.long	0		/* ms word */FPU_fsqrt_arg_1:	.long	0FPU_fsqrt_arg_0:	.long	0		/* ls word, at most the ms bit is set */#endif REENTRANT_FPU.text	.align 2,144.globl _wm_sqrt_wm_sqrt:	pushl	%ebp	movl	%esp,%ebp#ifdef REENTRANT_FPU	subl	$28,%esp#endif REENTRANT_FPU	pushl	%esi	pushl	%edi	pushl	%ebx	movl	PARAM1,%esi	movl	SIGH(%esi),%eax	movl	SIGL(%esi),%ecx	xorl	%edx,%edx/* We use a rough linear estimate for the first guess.. */	cmpl	EXP_BIAS,EXP(%esi)	jnz	sqrt_arg_ge_2	shrl	$1,%eax			/* arg is in the range  [1.0 .. 2.0) */	rcrl	$1,%ecx	rcrl	$1,%edxsqrt_arg_ge_2:/* From here on, n is never accessed directly again until it is   replaced by the answer. */	movl	%eax,FPU_fsqrt_arg_2		/* ms word of n */	movl	%ecx,FPU_fsqrt_arg_1	movl	%edx,FPU_fsqrt_arg_0/* Make a linear first estimate */	shrl	$1,%eax	addl	$0x40000000,%eax	movl	$0xaaaaaaaa,%ecx	mull	%ecx	shll	%edx			/* max result was 7fff... */	testl	$0x80000000,%edx	/* but min was 3fff... */	jnz	sqrt_prelim_no_adjust	movl	$0x80000000,%edx	/* round up */sqrt_prelim_no_adjust:	movl	%edx,%esi	/* Our first guess *//* We have now computed (approx)   (2 + x) / 3, which forms the basis   for a few iterations of Newton's method */	movl	FPU_fsqrt_arg_2,%ecx	/* ms word *//* * From our initial estimate, three iterations are enough to get us * to 30 bits or so. This will then allow two iterations at better * precision to complete the process. *//* Compute  (g + n/g)/2  at each iteration (g is the guess). */	shrl	%ecx		/* Doing this first will prevent a divide */				/* overflow later. */	movl	%ecx,%edx	/* msw of the arg / 2 */	divl	%esi		/* current estimate */	shrl	%esi		/* divide by 2 */	addl	%eax,%esi	/* the new estimate */	movl	%ecx,%edx	divl	%esi	shrl	%esi	addl	%eax,%esi	movl	%ecx,%edx	divl	%esi	shrl	%esi	addl	%eax,%esi/* * Now that an estimate accurate to about 30 bits has been obtained (in %esi), * we improve it to 60 bits or so. * * The strategy from now on is to compute new estimates from *      guess := guess + (n - guess^2) / (2 * guess) *//* First, find the square of the guess */	movl	%esi,%eax	mull	%esi/* guess^2 now in %edx:%eax */	movl	FPU_fsqrt_arg_1,%ecx	subl	%ecx,%eax	movl	FPU_fsqrt_arg_2,%ecx	/* ms word of normalized n */	sbbl	%ecx,%edx	jnc	sqrt_stage_2_positive/* Subtraction gives a negative result,   negate the result before division. */	notl	%edx	notl	%eax	addl	$1,%eax	adcl	$0,%edx	divl	%esi	movl	%eax,%ecx	movl	%edx,%eax	divl	%esi	jmp	sqrt_stage_2_finishsqrt_stage_2_positive:	divl	%esi	movl	%eax,%ecx	movl	%edx,%eax	divl	%esi	notl	%ecx	notl	%eax	addl	$1,%eax	adcl	$0,%ecxsqrt_stage_2_finish:	sarl	$1,%ecx		/* divide by 2 */	rcrl	$1,%eax	/* Form the new estimate in %esi:%edi */	movl	%eax,%edi	addl	%ecx,%esi	jnz	sqrt_stage_2_done	/* result should be [1..2) */#ifdef PARANOID/* It should be possible to get here only if the arg is ffff....ffff */	cmp	$0xffffffff,FPU_fsqrt_arg_1	jnz	sqrt_stage_2_error#endif PARANOID/* The best rounded result. */	xorl	%eax,%eax	decl	%eax	movl	%eax,%edi	movl	%eax,%esi	movl	$0x7fffffff,%eax	jmp	sqrt_round_result#ifdef PARANOIDsqrt_stage_2_error:	pushl	EX_INTERNAL|0x213	call	EXCEPTION#endif PARANOIDsqrt_stage_2_done:/* Now the square root has been computed to better than 60 bits. *//* Find the square of the guess. */	movl	%edi,%eax		/* ls word of guess */	mull	%edi	movl	%edx,FPU_accum_1	movl	%esi,%eax	mull	%esi	movl	%edx,FPU_accum_3	movl	%eax,FPU_accum_2	movl	%edi,%eax	mull	%esi	addl	%eax,FPU_accum_1	adcl	%edx,FPU_accum_2	adcl	$0,FPU_accum_3/*	movl	%esi,%eax *//*	mull	%edi */	addl	%eax,FPU_accum_1	adcl	%edx,FPU_accum_2	adcl	$0,FPU_accum_3/* guess^2 now in FPU_accum_3:FPU_accum_2:FPU_accum_1 */	movl	FPU_fsqrt_arg_0,%eax		/* get normalized n */	subl	%eax,FPU_accum_1	movl	FPU_fsqrt_arg_1,%eax	sbbl	%eax,FPU_accum_2	movl	FPU_fsqrt_arg_2,%eax		/* ms word of normalized n */	sbbl	%eax,FPU_accum_3	jnc	sqrt_stage_3_positive/* Subtraction gives a negative result,   negate the result before division */	notl	FPU_accum_1	notl	FPU_accum_2	notl	FPU_accum_3	addl	$1,FPU_accum_1	adcl	$0,FPU_accum_2#ifdef PARANOID	adcl	$0,FPU_accum_3	/* This must be zero */	jz	sqrt_stage_3_no_errorsqrt_stage_3_error:	pushl	EX_INTERNAL|0x207	call	EXCEPTIONsqrt_stage_3_no_error:#endif PARANOID	movl	FPU_accum_2,%edx	movl	FPU_accum_1,%eax	divl	%esi	movl	%eax,%ecx	movl	%edx,%eax	divl	%esi	sarl	$1,%ecx		/* divide by 2 */	rcrl	$1,%eax	/* prepare to round the result */	addl	%ecx,%edi	adcl	$0,%esi	jmp	sqrt_stage_3_finishedsqrt_stage_3_positive:	movl	FPU_accum_2,%edx	movl	FPU_accum_1,%eax	divl	%esi	movl	%eax,%ecx	movl	%edx,%eax	divl	%esi	sarl	$1,%ecx		/* divide by 2 */	rcrl	$1,%eax	/* prepare to round the result */	notl	%eax		/* Negate the correction term */	notl	%ecx	addl	$1,%eax	adcl	$0,%ecx		/* carry here ==> correction == 0 */	adcl	$0xffffffff,%esi	addl	%ecx,%edi	adcl	$0,%esisqrt_stage_3_finished:/* * The result in %esi:%edi:%esi should be good to about 90 bits here, * and the rounding information here does not have sufficient accuracy * in a few rare cases. */	cmpl	$0xffffffe0,%eax	ja	sqrt_near_exact_x	cmpl	$0x00000020,%eax	jb	sqrt_near_exact	cmpl	$0x7fffffe0,%eax	jb	sqrt_round_result	cmpl	$0x80000020,%eax	jb	sqrt_get_more_precisionsqrt_round_result:/* Set up for rounding operations */	movl	%eax,%edx	movl	%esi,%eax	movl	%edi,%ebx	movl	PARAM1,%edi	movl	EXP_BIAS,EXP(%edi)	/* Result is in  [1.0 .. 2.0) */	movl	PARAM2,%ecx	jmp	fpu_reg_round_sqrtsqrt_near_exact_x:/* First, the estimate must be rounded up. */	addl	$1,%edi	adcl	$0,%esisqrt_near_exact:/* * This is an easy case because x^1/2 is monotonic. * We need just find the square of our estimate, compare it * with the argument, and deduce whether our estimate is * above, below, or exact. We use the fact that the estimate * is known to be accurate to about 90 bits. */	movl	%edi,%eax		/* ls word of guess */	mull	%edi	movl	%edx,%ebx		/* 2nd ls word of square */	movl	%eax,%ecx		/* ls word of square */	movl	%edi,%eax	mull	%esi	addl	%eax,%ebx	addl	%eax,%ebx#ifdef PARANOID	cmp	$0xffffffb0,%ebx	jb	sqrt_near_exact_ok	cmp	$0x00000050,%ebx	ja	sqrt_near_exact_ok	pushl	EX_INTERNAL|0x214	call	EXCEPTIONsqrt_near_exact_ok:#endif PARANOID	or	%ebx,%ebx	js	sqrt_near_exact_small	jnz	sqrt_near_exact_large	or	%ebx,%edx	jnz	sqrt_near_exact_large/* Our estimate is exactly the right answer */	xorl	%eax,%eax	jmp	sqrt_round_resultsqrt_near_exact_small:/* Our estimate is too small */	movl	$0x000000ff,%eax	jmp	sqrt_round_result	sqrt_near_exact_large:/* Our estimate is too large, we need to decrement it */	subl	$1,%edi	sbbl	$0,%esi	movl	$0xffffff00,%eax	jmp	sqrt_round_resultsqrt_get_more_precision:/* This case is almost the same as the above, except we start   with an extra bit of precision in the estimate. */	stc			/* The extra bit. */	rcll	$1,%edi		/* Shift the estimate left one bit */	rcll	$1,%esi	movl	%edi,%eax		/* ls word of guess */	mull	%edi	movl	%edx,%ebx		/* 2nd ls word of square */	movl	%eax,%ecx		/* ls word of square */	movl	%edi,%eax	mull	%esi	addl	%eax,%ebx	addl	%eax,%ebx/* Put our estimate back to its original value */	stc			/* The ms bit. */	rcrl	$1,%esi		/* Shift the estimate left one bit */	rcrl	$1,%edi#ifdef PARANOID	cmp	$0xffffff60,%ebx	jb	sqrt_more_prec_ok	cmp	$0x000000a0,%ebx	ja	sqrt_more_prec_ok	pushl	EX_INTERNAL|0x215	call	EXCEPTIONsqrt_more_prec_ok:#endif PARANOID	or	%ebx,%ebx	js	sqrt_more_prec_small	jnz	sqrt_more_prec_large	or	%ebx,%ecx	jnz	sqrt_more_prec_large/* Our estimate is exactly the right answer */	movl	$0x80000000,%eax	jmp	sqrt_round_resultsqrt_more_prec_small:/* Our estimate is too small */	movl	$0x800000ff,%eax	jmp	sqrt_round_result	sqrt_more_prec_large:/* Our estimate is too large */	movl	$0x7fffff00,%eax	jmp	sqrt_round_result

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -