⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 fpu_trig.c

📁 汇编源码大全 有各种汇编源码 希望对你有所帮助
💻 C
📖 第 1 页 / 共 3 页
字号:
/*---------------------------------------------------------------------------+ |  fpu_trig.c                                                               | |                                                                           | | Implementation of the FPU "transcendental" functions.                     | |                                                                           | | Copyright (C) 1992,1993,1994                                              | |                       W. Metzenthen, 22 Parker St, Ormond, Vic 3163,      | |                       Australia.  E-mail   billm@vaxc.cc.monash.edu.au    | |                                                                           | |                                                                           | +---------------------------------------------------------------------------*/#include "fpu_system.h"#include "exception.h"#include "fpu_emu.h"#include "status_w.h"#include "control_w.h"#include "reg_constant.h"	static void rem_kernel(unsigned long long st0, unsigned long long *y,		       unsigned long long st1,		       unsigned long long q, int n);#define BETTER_THAN_486#define FCOS  4#define FPTAN 1/* Used only by fptan, fsin, fcos, and fsincos. *//* This routine produces very accurate results, similar to   using a value of pi with more than 128 bits precision. *//* Limited measurements show no results worse than 64 bit precision   except for the results for arguments close to 2^63, where the   precision of the result sometimes degrades to about 63.9 bits */static int trig_arg(FPU_REG *X, int even){  FPU_REG tmp;  unsigned long long q;  int old_cw = control_word, saved_status = partial_status;  if ( X->exp >= EXP_BIAS + 63 )    {      partial_status |= SW_C2;     /* Reduction incomplete. */      return -1;    }  control_word &= ~CW_RC;  control_word |= RC_CHOP;  reg_div(X, &CONST_PI2, &tmp, PR_64_BITS | RC_CHOP | 0x3f);  round_to_int(&tmp);  /* Fortunately, this can't overflow			  to 2^64 */  q = significand(&tmp);  if ( q )    {      rem_kernel(significand(X),		 &significand(&tmp),		 significand(&CONST_PI2),		 q, X->exp - CONST_PI2.exp);      tmp.exp = CONST_PI2.exp;      normalize(&tmp);      reg_move(&tmp, X);    }  if ( even == FPTAN )    {      if ( ((X->exp >= EXP_BIAS) ||	    ((X->exp == EXP_BIAS-1)	     && (X->sigh >= 0xc90fdaa2))) ^ (q & 1) )	even = FCOS;      else	even = 0;    }  if ( (even && !(q & 1)) || (!even && (q & 1)) )    {      reg_sub(&CONST_PI2, X, X, FULL_PRECISION);#ifdef BETTER_THAN_486      /* So far, the results are exact but based upon a 64 bit	 precision approximation to pi/2. The technique used	 now is equivalent to using an approximation to pi/2 which	 is accurate to about 128 bits. */      if ( (X->exp <= CONST_PI2extra.exp + 64) || (q > 1) )	{	  /* This code gives the effect of having p/2 to better than	     128 bits precision. */	  significand(&tmp) = q + 1;	  tmp.exp = EXP_BIAS + 63;	  tmp.tag = TW_Valid;	  normalize(&tmp);	  reg_mul(&CONST_PI2extra, &tmp, &tmp, FULL_PRECISION);	  reg_add(X, &tmp,  X, FULL_PRECISION);	  if ( X->sign == SIGN_NEG )	    {	      /* CONST_PI2extra is negative, so the result of the addition		 can be negative. This means that the argument is actually		 in a different quadrant. The correction is always < pi/2,		 so it can't overflow into yet another quadrant. */	      X->sign = SIGN_POS;	      q++;	    }	}#endif BETTER_THAN_486    }#ifdef BETTER_THAN_486  else    {      /* So far, the results are exact but based upon a 64 bit	 precision approximation to pi/2. The technique used	 now is equivalent to using an approximation to pi/2 which	 is accurate to about 128 bits. */      if ( ((q > 0) && (X->exp <= CONST_PI2extra.exp + 64)) || (q > 1) )	{	  /* This code gives the effect of having p/2 to better than	     128 bits precision. */	  significand(&tmp) = q;	  tmp.exp = EXP_BIAS + 63;	  tmp.tag = TW_Valid;	  normalize(&tmp);	  reg_mul(&CONST_PI2extra, &tmp, &tmp, FULL_PRECISION);	  reg_sub(X, &tmp, X, FULL_PRECISION);	  if ( (X->exp == CONST_PI2.exp) &&	      ((X->sigh > CONST_PI2.sigh)	       || ((X->sigh == CONST_PI2.sigh)		   && (X->sigl > CONST_PI2.sigl))) )	    {	      /* CONST_PI2extra is negative, so the result of the		 subtraction can be larger than pi/2. This means		 that the argument is actually in a different quadrant.		 The correction is always < pi/2, so it can't overflow		 into yet another quadrant. */	      reg_sub(&CONST_PI, X, X, FULL_PRECISION);	      q++;	    }	}    }#endif BETTER_THAN_486  control_word = old_cw;  partial_status = saved_status & ~SW_C2;     /* Reduction complete. */  return (q & 3) | even;}/* Convert a long to register */void convert_l2reg(long const *arg, FPU_REG *dest){  long num = *arg;  if (num == 0)    { reg_move(&CONST_Z, dest); return; }  if (num > 0)    dest->sign = SIGN_POS;  else    { num = -num; dest->sign = SIGN_NEG; }  dest->sigh = num;  dest->sigl = 0;  dest->exp = EXP_BIAS + 31;  dest->tag = TW_Valid;  normalize(dest);}static void single_arg_error(void){  switch ( FPU_st0_tag )    {    case TW_NaN:      if ( !(FPU_st0_ptr->sigh & 0x40000000) )   /* Signaling ? */	{	  EXCEPTION(EX_Invalid);	  if ( control_word & CW_Invalid )	    FPU_st0_ptr->sigh |= 0x40000000;	  /* Convert to a QNaN */	}      break;              /* return with a NaN in st(0) */    case TW_Empty:      stack_underflow();  /* Puts a QNaN in st(0) */      break;#ifdef PARANOID    default:      EXCEPTION(EX_INTERNAL|0x0112);#endif PARANOID    }}static void single_arg_2_error(void){  FPU_REG *st_new_ptr;  switch ( FPU_st0_tag )    {    case TW_NaN:      if ( !(FPU_st0_ptr->sigh & 0x40000000) )   /* Signaling ? */	{	  EXCEPTION(EX_Invalid);	  if ( control_word & CW_Invalid )	    {	      /* The masked response */	      /* Convert to a QNaN */	      FPU_st0_ptr->sigh |= 0x40000000;	      st_new_ptr = &st(-1);	      push();	      reg_move(&st(1), FPU_st0_ptr);	    }	}      else	{	  /* A QNaN */	  st_new_ptr = &st(-1);	  push();	  reg_move(&st(1), FPU_st0_ptr);	}      break;              /* return with a NaN in st(0) */#ifdef PARANOID    default:      EXCEPTION(EX_INTERNAL|0x0112);#endif PARANOID    }}/*---------------------------------------------------------------------------*/static void f2xm1(void){  clear_C1();  switch ( FPU_st0_tag )    {    case TW_Valid:      {	FPU_REG rv, tmp;	if ( FPU_st0_ptr->exp >= 0 )	  {	    /* For an 80486 FPU, the result is undefined. */	  }	else if ( FPU_st0_ptr->exp >= -64 )	  {	    if ( FPU_st0_ptr->sign == SIGN_POS )	      {		/* poly_2xm1(x) requires 0 < x < 1. */		poly_2xm1(FPU_st0_ptr, &rv);		reg_mul(&rv, FPU_st0_ptr, FPU_st0_ptr, FULL_PRECISION);	      }	    else	      {		/* poly_2xm1(x) doesn't handle negative numbers yet. */		/* So we compute z=poly_2xm1(-x), and the answer is		   then -z/(1+z) */		FPU_st0_ptr->sign = SIGN_POS;		poly_2xm1(FPU_st0_ptr, &rv);		reg_mul(&rv, FPU_st0_ptr, &rv, FULL_PRECISION);		reg_add(&rv, &CONST_1, &tmp, FULL_PRECISION);		reg_div(&rv, &tmp, FPU_st0_ptr, FULL_PRECISION);		FPU_st0_ptr->sign = SIGN_NEG;	      }	  }	else	  {#ifdef DENORM_OPERAND	    if ( (FPU_st0_ptr->exp <= EXP_UNDER) && (denormal_operand()) )	      return;#endif DENORM_OPERAND	    /* For very small arguments, this is accurate enough. */	    reg_mul(&CONST_LN2, FPU_st0_ptr, FPU_st0_ptr, FULL_PRECISION);	  }	set_precision_flag_up();	return;      }    case TW_Zero:      return;    case TW_Infinity:      if ( FPU_st0_ptr->sign == SIGN_NEG )	{	  /* -infinity gives -1 (p16-10) */	  reg_move(&CONST_1, FPU_st0_ptr);	  FPU_st0_ptr->sign = SIGN_NEG;	}      return;    default:      single_arg_error();    }}static void fptan(void){  FPU_REG *st_new_ptr;  int q;  char arg_sign = FPU_st0_ptr->sign;  /* Stack underflow has higher priority */  if ( FPU_st0_tag == TW_Empty )    {      stack_underflow();  /* Puts a QNaN in st(0) */      if ( control_word & CW_Invalid )	{	  st_new_ptr = &st(-1);	  push();	  stack_underflow();  /* Puts a QNaN in the new st(0) */	}      return;    }  if ( STACK_OVERFLOW )    { stack_overflow(); return; }  switch ( FPU_st0_tag )    {    case TW_Valid:      if ( FPU_st0_ptr->exp > EXP_BIAS - 40 )	{	  FPU_st0_ptr->sign = SIGN_POS;	  if ( (q = trig_arg(FPU_st0_ptr, FPTAN)) != -1 )	    {	      reg_div(FPU_st0_ptr, &CONST_PI2, FPU_st0_ptr,		      FULL_PRECISION);	      poly_tan(FPU_st0_ptr, FPU_st0_ptr, q & FCOS);	      FPU_st0_ptr->sign = (q & 1) ^ arg_sign;	    }	  else	    {	      /* Operand is out of range */	      FPU_st0_ptr->sign = arg_sign;         /* restore st(0) */	      return;	    }	}      else	{	  /* For a small arg, the result == the argument */	  /* Underflow may happen */	  if ( FPU_st0_ptr->exp <= EXP_UNDER )	    {#ifdef DENORM_OPERAND	      if ( denormal_operand() )		return;#endif DENORM_OPERAND	      /* A denormal result has been produced.		 Precision must have been lost, this is always		 an underflow. */	      if ( arith_underflow(FPU_st0_ptr) )		return;	    }	  else	    set_precision_flag_up();  /* Must be up. */	}      push();      reg_move(&CONST_1, FPU_st0_ptr);      return;      break;    case TW_Infinity:      /* The 80486 treats infinity as an invalid operand */      arith_invalid(FPU_st0_ptr);      if ( control_word & CW_Invalid )	{	  st_new_ptr = &st(-1);	  push();	  arith_invalid(FPU_st0_ptr);	}      return;    case TW_Zero:      push();      reg_move(&CONST_1, FPU_st0_ptr);      setcc(0);      break;    default:      single_arg_2_error();      break;    }}static void fxtract(void){  FPU_REG *st_new_ptr;  register FPU_REG *st1_ptr = FPU_st0_ptr;  /* anticipate */  if ( STACK_OVERFLOW )    {  stack_overflow(); return; }  clear_C1();  if ( !(FPU_st0_tag ^ TW_Valid) )    {      long e;#ifdef DENORM_OPERAND      if ( (FPU_st0_ptr->exp <= EXP_UNDER) && (denormal_operand()) )	return;#endif DENORM_OPERAND	        push();      reg_move(st1_ptr, FPU_st0_ptr);      FPU_st0_ptr->exp = EXP_BIAS;      e = st1_ptr->exp - EXP_BIAS;      convert_l2reg(&e, st1_ptr);      return;    }  else if ( FPU_st0_tag == TW_Zero )    {      char sign = FPU_st0_ptr->sign;      if ( divide_by_zero(SIGN_NEG, FPU_st0_ptr) )	return;      push();      reg_move(&CONST_Z, FPU_st0_ptr);      FPU_st0_ptr->sign = sign;      return;    }  else if ( FPU_st0_tag == TW_Infinity )    {      char sign = FPU_st0_ptr->sign;      FPU_st0_ptr->sign = SIGN_POS;      push();      reg_move(&CONST_INF, FPU_st0_ptr);      FPU_st0_ptr->sign = sign;      return;    }  else if ( FPU_st0_tag == TW_NaN )    {      if ( real_2op_NaN(FPU_st0_ptr, FPU_st0_ptr, FPU_st0_ptr) )	return;      push();      reg_move(st1_ptr, FPU_st0_ptr);      return;    }  else if ( FPU_st0_tag == TW_Empty )    {      /* Is this the correct behaviour? */      if ( control_word & EX_Invalid )	{	  stack_underflow();	  push();	  stack_underflow();	}      else	EXCEPTION(EX_StackUnder);    }#ifdef PARANOID  else    EXCEPTION(EX_INTERNAL | 0x119);#endif PARANOID}static void fdecstp(void){  clear_C1();  top--;  /* FPU_st0_ptr will be fixed in math_emulate() before the next instr */}static void fincstp(void){  clear_C1();  top++;  /* FPU_st0_ptr will be fixed in math_emulate() before the next instr */}static void fsqrt_(void){  clear_C1();  if ( !(FPU_st0_tag ^ TW_Valid) )    {      int expon;            if (FPU_st0_ptr->sign == SIGN_NEG)	{	  arith_invalid(FPU_st0_ptr);  /* sqrt(negative) is invalid */	  return;	}#ifdef DENORM_OPERAND      if ( (FPU_st0_ptr->exp <= EXP_UNDER) && (denormal_operand()) )	return;#endif DENORM_OPERAND      expon = FPU_st0_ptr->exp - EXP_BIAS;      FPU_st0_ptr->exp = EXP_BIAS + (expon & 1);  /* make st(0) in  [1.0 .. 4.0) */            wm_sqrt(FPU_st0_ptr, control_word);	/* Do the computation */            FPU_st0_ptr->exp += expon >> 1;      FPU_st0_ptr->sign = SIGN_POS;    }  else if ( FPU_st0_tag == TW_Zero )    return;  else if ( FPU_st0_tag == TW_Infinity )    {      if ( FPU_st0_ptr->sign == SIGN_NEG )	arith_invalid(FPU_st0_ptr);  /* sqrt(-Infinity) is invalid */      return;    }  else    { single_arg_error(); return; }}static void frndint_(void){  int flags;  if ( !(FPU_st0_tag ^ TW_Valid) )    {      if (FPU_st0_ptr->exp > EXP_BIAS+63)	return;#ifdef DENORM_OPERAND      if ( (FPU_st0_ptr->exp <= EXP_UNDER) && (denormal_operand()) )	return;#endif DENORM_OPERAND      /* Fortunately, this can't overflow to 2^64 */      if ( (flags = round_to_int(FPU_st0_ptr)) )	set_precision_flag(flags);      FPU_st0_ptr->exp = EXP_BIAS + 63;      normalize(FPU_st0_ptr);      return;    }  else if ( (FPU_st0_tag == TW_Zero) || (FPU_st0_tag == TW_Infinity) )    return;  else    single_arg_error();}static void fsin(void){  char arg_sign = FPU_st0_ptr->sign;  if ( FPU_st0_tag == TW_Valid )    {      FPU_REG rv;      int q;      if ( FPU_st0_ptr->exp > EXP_BIAS - 40 )	{	  FPU_st0_ptr->sign = SIGN_POS;	  if ( (q = trig_arg(FPU_st0_ptr, 0)) != -1 )	    {	      reg_div(FPU_st0_ptr, &CONST_PI2, FPU_st0_ptr, FULL_PRECISION);	      poly_sine(FPU_st0_ptr, &rv);	      if (q & 2)		rv.sign ^= SIGN_POS ^ SIGN_NEG;	      rv.sign ^= arg_sign;	      reg_move(&rv, FPU_st0_ptr);	      /* We do not really know if up or down */	      set_precision_flag_up();	      return;	    }	  else	    {	      /* Operand is out of range */	      FPU_st0_ptr->sign = arg_sign;         /* restore st(0) */	      return;	    }	}      else	{	  /* For a small arg, the result == the argument */	  /* Underflow may happen */	  if ( FPU_st0_ptr->exp <= EXP_UNDER )	    {#ifdef DENORM_OPERAND	      if ( denormal_operand() )		return;#endif DENORM_OPERAND	      /* A denormal result has been produced.		 Precision must have been lost, this is always		 an underflow. */	      arith_underflow(FPU_st0_ptr);

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -