📄 jpgraph_pie3d.php
字号:
<?php
/*=======================================================================
// File: JPGRAPH_PIE3D.PHP
// Description: 3D Pie plot extension for JpGraph
// Created: 2001-03-24
// Author: Johan Persson (johanp@aditus.nu)
// Ver: $Id: jpgraph_pie3d.php 41 2005-06-06 10:46:10Z ljp $
//
// Copyright (c) Aditus Consulting. All rights reserved.
//========================================================================
*/
//===================================================
// CLASS PiePlot3D
// Description: Plots a 3D pie with a specified projection
// angle between 20 and 70 degrees.
//===================================================
class PiePlot3D extends PiePlot {
var $labelhintcolor="red",$showlabelhint=true;
var $angle=50;
var $edgecolor="", $edgeweight=1;
var $iThickness=false;
//---------------
// CONSTRUCTOR
function PiePlot3d(&$data) {
$this->radius = 0.5;
$this->data = $data;
$this->title = new Text("");
$this->title->SetFont(FF_FONT1,FS_BOLD);
$this->value = new DisplayValue();
$this->value->Show();
$this->value->SetFormat('%.0f%%');
}
//---------------
// PUBLIC METHODS
// Set label arrays
function SetLegends($aLegend) {
$this->legends = array_reverse($aLegend);
}
function SetSliceColors($aColors) {
$this->setslicecolors = $aColors;
}
function Legend(&$aGraph) {
parent::Legend($aGraph);
$aGraph->legend->txtcol = array_reverse($aGraph->legend->txtcol);
}
function SetCSIMTargets($targets,$alts=null) {
$this->csimtargets = $targets;
$this->csimalts = $alts;
}
// Should the slices be separated by a line? If color is specified as "" no line
// will be used to separate pie slices.
function SetEdge($aColor,$aWeight=1) {
$this->edgecolor = $aColor;
$this->edgeweight = $aWeight;
}
// Specify projection angle for 3D in degrees
// Must be between 20 and 70 degrees
function SetAngle($a) {
if( $a<5 || $a>90 )
JpGraphError::Raise("PiePlot3D::SetAngle() 3D Pie projection angle must be between 5 and 85 degrees.");
else
$this->angle = $a;
}
function AddSliceToCSIM($i,$xc,$yc,$height,$width,$thick,$sa,$ea) { //Slice number, ellipse centre (x,y), height, width, start angle, end angle
$sa *= M_PI/180;
$ea *= M_PI/180;
//add coordinates of the centre to the map
$coords = "$xc, $yc";
//add coordinates of the first point on the arc to the map
$xp = floor($width*cos($sa)/2+$xc);
$yp = floor($yc-$height*sin($sa)/2);
$coords.= ", $xp, $yp";
//If on the front half, add the thickness offset
if ($sa >= M_PI && $sa <= 2*M_PI*1.01) {
$yp = floor($yp+$thick);
$coords.= ", $xp, $yp";
}
//add coordinates every 0.2 radians
$a=$sa+0.2;
while ($a<$ea) {
$xp = floor($width*cos($a)/2+$xc);
if ($a >= M_PI && $a <= 2*M_PI*1.01) {
$yp = floor($yc-($height*sin($a)/2)+$thick);
} else {
$yp = floor($yc-$height*sin($a)/2);
}
$coords.= ", $xp, $yp";
$a += 0.2;
}
//Add the last point on the arc
$xp = floor($width*cos($ea)/2+$xc);
$yp = floor($yc-$height*sin($ea)/2);
if ($ea >= M_PI && $ea <= 2*M_PI*1.01) {
$coords.= ", $xp, ".floor($yp+$thick);
}
$coords.= ", $xp, $yp";
$alt='';
if( !empty($this->csimalts[$i]) ) {
$tmp=sprintf($this->csimalts[$i],$this->data[$i]);
$alt="alt=\"$tmp\" title=\"$tmp\"";
}
if( !empty($this->csimtargets[$i]) )
$this->csimareas .= "<area shape=\"poly\" coords=\"$coords\" href=\"".$this->csimtargets[$i]."\" $alt />\n";
}
function SetLabels($aLabels,$aLblPosAdj="auto") {
$this->labels = $aLabels;
$this->ilabelposadj=$aLblPosAdj;
}
// Distance from the pie to the labels
function SetLabelMargin($m) {
$this->value->SetMargin($m);
}
// Show a thin line from the pie to the label for a specific slice
function ShowLabelHint($f=true) {
$this->showlabelhint=$f;
}
// Set color of hint line to label for each slice
function SetLabelHintColor($c) {
$this->labelhintcolor=$c;
}
function SetHeight($aHeight) {
$this->iThickness = $aHeight;
}
// Normalize Angle between 0-360
function NormAngle($a) {
// Normalize anle to 0 to 2M_PI
//
if( $a > 0 ) {
while($a > 360) $a -= 360;
}
else {
while($a < 0) $a += 360;
}
if( $a < 0 )
$a = 360 + $a;
if( $a == 360 ) $a=0;
return $a;
}
// Draw one 3D pie slice at position ($xc,$yc) with height $z
function Pie3DSlice($img,$xc,$yc,$w,$h,$sa,$ea,$z,$fillcolor,$shadow=0.65) {
// Due to the way the 3D Pie algorithm works we are
// guaranteed that any slice we get into this method
// belongs to either the left or right side of the
// pie ellipse. Hence, no slice will cross 90 or 270
// point.
if( ($sa < 90 && $ea > 90) || ( ($sa > 90 && $sa < 270) && $ea > 270) ) {
JpGraphError::Raise('Internal assertion failed. Pie3D::Pie3DSlice');
exit(1);
}
$p[] = array();
// Setup pre-calculated values
$rsa = $sa/180*M_PI; // to Rad
$rea = $ea/180*M_PI; // to Rad
$sinsa = sin($rsa);
$cossa = cos($rsa);
$sinea = sin($rea);
$cosea = cos($rea);
// p[] is the points for the overall slice and
// pt[] is the points for the top pie
// Angular step when approximating the arc with a polygon train.
$step = 0.05;
if( $sa >= 270 ) {
if( $ea > 360 || ($ea > 0 && $ea <= 90) ) {
if( $ea > 0 && $ea <= 90 ) {
// Adjust angle to simplify conditions in loops
$rea += 2*M_PI;
}
$p = array($xc,$yc,$xc,$yc+$z,
$xc+$w*$cossa,$z+$yc-$h*$sinsa);
$pt = array($xc,$yc,$xc+$w*$cossa,$yc-$h*$sinsa);
for( $a=$rsa; $a < 2*M_PI; $a += $step ) {
$tca = cos($a);
$tsa = sin($a);
$p[] = $xc+$w*$tca;
$p[] = $z+$yc-$h*$tsa;
$pt[] = $xc+$w*$tca;
$pt[] = $yc-$h*$tsa;
}
$pt[] = $xc+$w;
$pt[] = $yc;
$p[] = $xc+$w;
$p[] = $z+$yc;
$p[] = $xc+$w;
$p[] = $yc;
$p[] = $xc;
$p[] = $yc;
for( $a=2*M_PI+$step; $a < $rea; $a += $step ) {
$pt[] = $xc + $w*cos($a);
$pt[] = $yc - $h*sin($a);
}
$pt[] = $xc+$w*$cosea;
$pt[] = $yc-$h*$sinea;
$pt[] = $xc;
$pt[] = $yc;
}
else {
$p = array($xc,$yc,$xc,$yc+$z,
$xc+$w*$cossa,$z+$yc-$h*$sinsa);
$pt = array($xc,$yc,$xc+$w*$cossa,$yc-$h*$sinsa);
$rea = $rea == 0.0 ? 2*M_PI : $rea;
for( $a=$rsa; $a < $rea; $a += $step ) {
$tca = cos($a);
$tsa = sin($a);
$p[] = $xc+$w*$tca;
$p[] = $z+$yc-$h*$tsa;
$pt[] = $xc+$w*$tca;
$pt[] = $yc-$h*$tsa;
}
$pt[] = $xc+$w*$cosea;
$pt[] = $yc-$h*$sinea;
$pt[] = $xc;
$pt[] = $yc;
$p[] = $xc+$w*$cosea;
$p[] = $z+$yc-$h*$sinea;
$p[] = $xc+$w*$cosea;
$p[] = $yc-$h*$sinea;
$p[] = $xc;
$p[] = $yc;
}
}
elseif( $sa >= 180 ) {
$p = array($xc,$yc,$xc,$yc+$z,$xc+$w*$cosea,$z+$yc-$h*$sinea);
$pt = array($xc,$yc,$xc+$w*$cosea,$yc-$h*$sinea);
for( $a=$rea; $a>$rsa; $a -= $step ) {
$tca = cos($a);
$tsa = sin($a);
$p[] = $xc+$w*$tca;
$p[] = $z+$yc-$h*$tsa;
$pt[] = $xc+$w*$tca;
$pt[] = $yc-$h*$tsa;
}
$pt[] = $xc+$w*$cossa;
$pt[] = $yc-$h*$sinsa;
$pt[] = $xc;
$pt[] = $yc;
$p[] = $xc+$w*$cossa;
$p[] = $z+$yc-$h*$sinsa;
$p[] = $xc+$w*$cossa;
$p[] = $yc-$h*$sinsa;
$p[] = $xc;
$p[] = $yc;
}
elseif( $sa >= 90 ) {
if( $ea > 180 ) {
$p = array($xc,$yc,$xc,$yc+$z,$xc+$w*$cosea,$z+$yc-$h*$sinea);
$pt = array($xc,$yc,$xc+$w*$cosea,$yc-$h*$sinea);
for( $a=$rea; $a > M_PI; $a -= $step ) {
$tca = cos($a);
$tsa = sin($a);
$p[] = $xc+$w*$tca;
$p[] = $z + $yc - $h*$tsa;
$pt[] = $xc+$w*$tca;
$pt[] = $yc-$h*$tsa;
}
$p[] = $xc-$w;
$p[] = $z+$yc;
$p[] = $xc-$w;
$p[] = $yc;
$p[] = $xc;
$p[] = $yc;
$pt[] = $xc-$w;
$pt[] = $z+$yc;
$pt[] = $xc-$w;
$pt[] = $yc;
for( $a=M_PI-$step; $a > $rsa; $a -= $step ) {
$pt[] = $xc + $w*cos($a);
$pt[] = $yc - $h*sin($a);
}
$pt[] = $xc+$w*$cossa;
$pt[] = $yc-$h*$sinsa;
$pt[] = $xc;
$pt[] = $yc;
}
else { // $sa >= 90 && $ea <= 180
$p = array($xc,$yc,$xc,$yc+$z,
$xc+$w*$cosea,$z+$yc-$h*$sinea,
$xc+$w*$cosea,$yc-$h*$sinea,
$xc,$yc);
$pt = array($xc,$yc,$xc+$w*$cosea,$yc-$h*$sinea);
for( $a=$rea; $a>$rsa; $a -= $step ) {
$pt[] = $xc + $w*cos($a);
$pt[] = $yc - $h*sin($a);
}
$pt[] = $xc+$w*$cossa;
$pt[] = $yc-$h*$sinsa;
$pt[] = $xc;
$pt[] = $yc;
}
}
else { // sa > 0 && ea < 90
$p = array($xc,$yc,$xc,$yc+$z,
$xc+$w*$cossa,$z+$yc-$h*$sinsa,
$xc+$w*$cossa,$yc-$h*$sinsa,
$xc,$yc);
$pt = array($xc,$yc,$xc+$w*$cossa,$yc-$h*$sinsa);
for( $a=$rsa; $a < $rea; $a += $step ) {
$pt[] = $xc + $w*cos($a);
$pt[] = $yc - $h*sin($a);
}
$pt[] = $xc+$w*$cosea;
$pt[] = $yc-$h*$sinea;
$pt[] = $xc;
$pt[] = $yc;
}
$img->PushColor($fillcolor.":".$shadow);
$img->FilledPolygon($p);
$img->PopColor();
$img->PushColor($fillcolor);
$img->FilledPolygon($pt);
$img->PopColor();
}
function SetStartAngle($aStart) {
if( $aStart < 0 || $aStart > 360 ) {
JpGraphError::Raise('Slice start angle must be between 0 and 360 degrees.');
}
$this->startangle = $aStart;
}
// Draw a 3D Pie
function Pie3D($aaoption,$img,$data,$colors,$xc,$yc,$d,$angle,$z,
$shadow=0.65,$startangle=0,$edgecolor="",$edgeweight=1) {
//---------------------------------------------------------------------------
// As usual the algorithm get more complicated than I originally
// envisioned. I believe that this is as simple as it is possible
// to do it with the features I want. It's a good exercise to start
// thinking on how to do this to convince your self that all this
// is really needed for the general case.
//
// The algorithm two draw 3D pies without "real 3D" is done in
// two steps.
// First imagine the pie cut in half through a thought line between
// 12'a clock and 6'a clock. It now easy to imagine that we can plot
// the individual slices for each half by starting with the topmost
// pie slice and continue down to 6'a clock.
//
// In the algortithm this is done in three principal steps
// Step 1. Do the knife cut to ensure by splitting slices that extends
// over the cut line. This is done by splitting the original slices into
// upto 3 subslices.
// Step 2. Find the top slice for each half
// Step 3. Draw the slices from top to bottom
//
// The thing that slightly complicates this scheme with all the
// angle comparisons below is that we can have an arbitrary start
// angle so we must take into account the different equivalence classes.
// For the same reason we must walk through the angle array in a
// modulo fashion.
//
// Limitations of algorithm:
// * A small exploded slice which crosses the 270 degree point
// will get slightly nagged close to the center due to the fact that
// we print the slices in Z-order and that the slice left part
// get printed first and might get slightly nagged by a larger
// slice on the right side just before the right part of the small
// slice. Not a major problem though.
//---------------------------------------------------------------------------
// Determine the height of the ellippse which gives an
// indication of the inclination angle
$h = ($angle/90.0)*$d;
$sum = 0;
for($i=0; $i<count($data); ++$i ) {
$sum += $data[$i];
}
// Special optimization
if( $sum==0 ) return;
if( $this->labeltype == 2 ) {
$this->adjusted_data = $this->AdjPercentage($data);
}
// Setup the start
$accsum = 0;
$a = $startangle;
$a = $this->NormAngle($a);
//
// Step 1 . Split all slices that crosses 90 or 270
//
$idx=0;
$adjexplode=array();
$numcolors = count($colors);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -